ijaers social
google plus

International Journal of Advanced
Engineering, Management and Science

ijaems google ijaems academia ijaems pbn nauka gov JournalToc Scilit logo Tyndale Library WorldCat indiana Library WorldCat aalborg university Library J-Gate academickeys ijaems rootindexing ijaems reddit ijaems research bib ijaems slideshare ijaers digg ijaems tumblr ijaems plurk ijaems I2OR ijaems ASI ijaems bibsonomy

Numerical and Statistical Quantifications of Biodiversity: Two-At-A-Time Equal Variations
( Vol-4,Issue-1,January 2018 )


Ekaka-a E.N., Osahogulu D.J., Atsu J. U., Isibor L. A.


Ecological concept, environmental problem, biodiversity, numerical simulation, intrinsic growth rate, ecosystem stability.


The ecological concept of biodiversity is a challenging environmental problem that requires a sound mathematical reasoning. We have used the method of a numerical simulation that is indexed by a numerical scheme to predict biodiversity loss and biodiversity gain due to a decreasing and increasing variations of the intrinsic growth rates together. The novel results that we have obtained that we have not seen elsewhere, but do complement other similar numerical predictions of biodiversity are presented and discussed quantitatively.

ijaers doi crossrefDOI:


Cite This Article:
Show All (MLA | APA | Chicago | Harvard | IEEE | Bibtex)
Paper Statistics:
  • Total View : 35
  • Downloads : 7
  • Page No: 004-009

[1] Atsu, J. U. & Ekaka-a, E. N. (2017). Modeling the policy implications of biodiversity loss: A case study of the Cross River national park, south – south Nigeria. International Journal of Pure and Applied Science, Cambridge Research and Publications. vol 10 No. 1; pp 30-37.
[2] Atsu, J. U. & Ekaka-a, E. N. (2017). Quantifying the impact of changing intrinsic growth rate on the biodiversity of the forest resource biomass: implications for the Cross River State forest resource at the Cross River National Park, South – South, Nigeria: African Scholar Journal of Pure and Applied Science, 7(1); 117 – 130.
[3] De Mazancourt, C., Isbell, F., Larocque, A., Berendse, F., De Luca, E., Grace,J.B etal. (2013). Predicting ecosystem stability from community composition and biodiversity. Ecology Letters,, DOI: 10.1111/ele.12088.
[4] Doak, D.F., Bigger, D., Harding, E.K., Marvier, M.A., O’Malley, R.E. &Thomson, D. (1998). The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat., 151, 264–276.
[5] Ernest, S.K.M. & Brown, J.H. (2001).Homeostasis and compensation: the roleof species and resources in ecosystem stability. Ecology, 82, 2118–2132.Fowler, M.S. (2009). Increasing community size and connectance can increase stability in competitive communities. J. Theor. Biol., 258, 179–188.
[6] Fowler, M.S., Laakso, J., Kaitala, V., Ruokolainen, L. & Ranta, E. (2012). Species dynamics alter community diversity-biomass stability relationships. Ecol. Lett.,15, 1387–1396.
[7] Gonzalez, A. & Descamps-Julien, B. (2004). Population and community variability in randomly fluctuating environments. Oikos, 106, 105–116.
[8] Gonzalez, A. & Loreau, M. (2009). The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst., 40, 393–414.
[9] Grman, E., Lau, J.A., Donald, R., Schoolmaster, J. & Gross, K.L. (2010).Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett., 13, 1400–1410.
[10] Hector, A., Hautier, Y., Saner, P., Wacker, L., Bagchi, R., Joshi, J. et al. (2010).General stabilizing effects of plant diversity on grassland productivity through population asynchrony and over yielding. Ecology, 91, 2213–2220.
[11] Loreau, M.. & de Mazancourt, C.. (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett., DOI: 10.1111/ele.12073.
[12] Loreau, M. & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72–76.
[13] MacArthur, R. (1955). Fluctuations of Animal Populations, and a Measure of Community Stability. Ecology, 36, 533–536.
[14] Marquard, E., Weigelt, A., Roscher, C., Gubsch, M., Lipowsky, A. & Schmid, B.(2009). Positive biodiversity-productivity relationship due to increased plant density. J. Ecol., 97, 696–704.
[15] May, R.M. (1973). Stability and complexity in model ecosystems. 2001, Princeton Landmarks in Biology edn. Princeton University Press, Princeton. McCann, K.S. (2000). The diversity-stability debate. Nature, 405, 228–233.
[16] McNaughton, S.J. (1977). Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Nat., 111, 515–525.
[17] Mutshinda, C.M., O’Hara, R.B. & Woiwod, I.P. (2009). What drives community dynamics? Proc. Biol. Sci., 276, 2923–2929.
[18] Proulx, R., Wirth, C., Voigt, W., Weigelt, A., Roscher, C., Attinger, S. et al.(2010). Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands. PLoS ONE, 5, e13382.
[19] Roscher, C., Weigelt, A., Proulx, R., Marquard, E., Schumacher, J., Weisser, W.W. et al. (2011). Identifying population- and community-level mechanisms of diversity–stability relationships in experimental grasslands. J. Ecol., 99, 1460–1469.
[20] Van Ruijven, J. & Berendse, F. (2007). Contrasting effects of diversity on the temporal stability of plant populations. Oikos, 116, 1323–1330.
[21] Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.
[22] Rahmstorf, S., Cazenave, A., Church, J.A., Hansen, J.E., Keeling, R.F., Parker, D.E., and R.C.J. Somerville, 2007: Recent climate observations compared to projections. Science 316 (5825):709-709.
[23] Domingues, C.M, Church, J.A:, White, N.J., Gleckler, P.J, Wijffels, S.E., Barker, P.M. and J.R.Dunn, 2008:. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090-1094.