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Abstract—The steady flow of an incompressible Oldroyd
8-constant fluid in the annular region between two
concentric cylinders, or so-called cylindrical Couette
flow, is investigated. The inner cylinder rotates with an
angular velocity Q about its own axis, z-axis, while the
outer cylinder is kept at rest. The viscoelagticity of the
fluid is assumed to dominate the inertia such that the
latter can be neglected in the momentum equation. An
analytical solution is obtained through the expansion of
the dynamical variables in power series of the
dimensionless retardation time. The primary velocity term
denotes the Newtonian rotation about the zaxis. The
first-order is a vanishing term. The second-order results
in a secondary flow represented by the stream-function.
This second-order term is the viscoelastic contribution to
the primary viscous flow. The second-order
approximation depends on the four viscometric
parameters of the fluid.

Keywords—cylindrical Couette flow, Oldroyd 8-consta
model, secondary flow.

l. INTRODUCTION
Fluid flow in the annular region between two raigti
objects has attracted the attention for the lagtdecades
in many branches of industries and technology [1G8ie
of these flow problems is the viscous and viscdielas
flow between two cylinders. Fluids are generally
classified based on their rheological propertiehie T
simplest classification is Newtonian fluid. Thedaids
are represented using Navier-Stokes theory. Thisflu
which do not obey Newton's law of viscosity are
described as non- Newtonian fluids. Examples ofsuc
fluids are blood, saliva, semen, lava, gums, s8ri
emulsions, synovial fluid, butter, cheese, jam,ckap,
soup, mayonnaise etc.
Numerous models, or so called constitutive equation
have been proposed to describe the response d$ finat
cannot be characterized by the classical NaviekeSto
fluid model. The progress of any constitutive edurat
based on the investigated rheolegical properties fafid
behavior under consideration simplest constitutive
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equation for a fluid is a Newtonian one and thessilzal
Navier-Stokes theory is based on this equation. The
mechanical behavior of many fluids is well enough
described by this theory. However, there are many
rheologically complicated fluids such as polymer
solutions, blood and certain oils, suspensionsuidiq
crystals in industrial processes with non-linear
viscoelastic behavior that cannot be described by a
Newtonian constitutive equation, as it does ndeotfany
relaxation and retardation phenomena.
In recent years, the interest for non-Newtoniamdfflows
has considerably increased and many exact solutiavs
been obtained [7-10]. For this reason, many mokai®
been proposed in which fluids are usually classifis of
differential rate and integral types [11]. The diffntial
type models are used to describe the response dititds
which have slight memory such as dilute polymeric
solutions whereas the integral models are useédoribe
the response of the fluids which have considerable
memory such as polymeric melts. A large numberami-n
Newtonian fluid models are concerned with the fuaf
grade two and three, but these fluids do not ptestiess
relaxation and retardation. Models of the Maxwell,
Oldroyd-B and Burgers'fluid type can predict these
phenomena, and have therefore become more popular.
The Oldroyd-B fluid model [12] which takes into acmt
elastic and memory effects exhibited by most polyee
and biological liquids, has been used quite widely
many applications and the results of simulations to
experimental data in a wide range.[13] The Oldr&yd-
fluids belong to the class of rate type fluid mafibi-22].
Generally, there exist three kinds of boundary &alu
problems: (1) when the velocity is given on the riary;
(2) when the shear stress is given on the bouratzohy(3)
mixed boundary value problems. From the application
point of view, the first one of boundary value peobs
are of interest. Axial flow in an annulus between a
rotating inner cylinder and a fixed outer cylindeas
several important engineering applications inclgdin
journal bearings, biological separation devicedatiog
machinery, desalination to magneto hydrodynamia$ an
also in viscosimetric analysis[23-25].
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At present, the flow field of an incompressible flgd 8-
costant fluid in the annular region between twoaoguttric
cylinders is investigated. The inner cylinder retatvith a

uniform velocity Q about its own z-axis centered in the
origin of the system and the outer cylinder is beihrest.
The suggested Oldroyd 8-costant constitutive equoat
linear in the stresses alone and contains all plesgrms
quadratic in the stress and the velocity-gradient
components consistent with giving a symmetric stres
tensor. Moreover, this model already presents a
considerable simplification with respect to genenadels

of simple fluids. Hence, this model can describerano
rheological behaviors method of solution and thiaioied
results.

Il. FORMULATION OF PROBLEM
A viscoelastic fluid moves in the annular spaceneen
two concentric cylinders of radigy, and R, (R, > R,).
The motion is due to the rotation of the inner mgér
with angular velocityQ about its axis , z-axis, while the
outer cylinder is kept at rest.
2.1 DIMENSIONLESS VARIABLE
In the present work, for the dimensional variable-
quantities; namely, the lengthr, velocity v,

deformation tensord , stress tensort, pressurepand

the stream-functioy , it is more convenient to introduce
the following dimensionless variables in terms o@hn
dimensional cylindrical polar coordinatés, &, z) ,

r=F/R; V =VIQR=(UVEWg);

(2-1)
D=d/Q; P=p/nQ, ¥=y/RQ,T=t/inQ

where, the non-dimensionality is obtained by ung,

Q and 17,Q as the characteristic length, time and stress;

respectively.

2.2 CONSTITUTIVE EQUATION

To get a comprehensive idea about the behavior of a
viscoelastic fluid, we adopted the Oldroyd 8-costan
model in the present work. This model represents afmn
the most general constitutive equations for thé fasr
decades, Zmievski et al.[26], and it includes a beirof
frequently used constitutive equations as specales
[27,28,29]; (see Table (A-1) of appendix A). Heveg
shall use Oldroyd's suggestion [27,30,31] whichuoes

the model to 6-parameters model by assuming that

A,=A,=0
Oldroyd constitutive equation relates the stressebthe

kinematic variables through the non-dimensional
equation; [30],
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T=2D —)l{fl'lmwfs(trT)D—ZIDD +(&T: D-2¢4,D: )|},(2-2a)

and
T =-Pl+ T . (2-2b)
A=AQ, & =% for i = 1567,

2

where I Q:%[(D\l)ﬂD\l)T] and | are the extra-
stress, the rate of deformation and the unit temsor
respectively. The material constanpg |, )\1 and )\2

are the viscosity, the relaxation and retardatiomes ;
respectively, whiled; ... A, are further material time

constants , T ayc is the Cauchy stress tensor. The

upper-convected derivative for any symmetric ten€or

is defined by

090G .
G=—=+V.0G-GIV-(GIV)".
2.3 THE CONTINUITY AND MOMENTUM
EQUATION

The dimensionless velocity field may be written as

V.= [(UNRV(NOW(NZ (2-3)
The continuity equation is satisfied identically by
introducing a stream-function defined by

U,=UT +oa=-00(¢2) . (2-4)

We assume that the forces due to viscoelasticity ar
dominated such that the inertial termhIV is n 2gli ible

in the momentum equation. Thus, for steady stage th
momentum equation; 0P +0 T =0, is given by

ad
—EP+21DD—A{DEEEJ+<‘5WD—2E}—E{JGT:D—267D:D]}=0' (2-5)

The perturbation term, Eq. (2-2b), is abbreviated i

Eq. (2-5) by the vector A(r,f)and the scalar
G(r,6) defined by the expressions
O m]
ACO=0JET+&TD-2D| (o)
G(r,6)=| &I : D-2D: D), (2-6b)
Hence, the momentum equation, EQq.(2-5), can be
factorized into the pair of equations
() O°W2)-AA2=0, A, =20, (2-7)
Which reduces to the scalar equation
1 1
—[6, (W) +—=0% (\N)} -M,;=0. (2-8)
r ' r

(i) D°U-AA-0(P-G)=0; Ay =A-2\;, (2-9)
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Taking the curl of Eq.(2-9) and substituting frég.((2-
4), we get the scalar equation

[rlar(rar)ﬂlzaé} -200,rA)-0AI =0, 210

Where,
Ao =AF+A,0 . (2-11)

The components oA are given as:

0

A =TSR [H(ET, -2 +ED )M OIET,  (2-12a)
200 +{5FDr5,)]+%[2 Doo—¢, Tor&D,y]

A, = OA =120 [12(ET,-2D,,+&FD,,) + (2-12b)

£780,[1? (ET g =2 Doy + ET Dyl

and

Ay= 2A =179 (6,T,-2Dw++&TD, )+ (2-12¢)

9,00 (£,Ty— 2D e + +ED,)]
Where, I =T, +T,, +T, =tr(l).

r

] ]
The components of the tensofs, T , D andD are

given in appendix (A).

2.4 BOUNDARY CONDITIONS

The boundary conditions imposed on the functionantf
Y are:

W=0 0 at r=la; a=R/R, (2-13a)
Y =Q, 0 at r=1 a. (2-13b)
W =10 at r=1 a. (2-13c)

where Q is the flow rate.Then, using Eqgs. (2-8) @xd
10), the functiondV and W are determined.

M. METHOD OFSOLUTION
Expanding the functionsW,%, D,T and P in power

series of the parameter as follows
A=Y AAD (3-1)
n=0

where A may represents any of the above functions.
Consequently, the expansion of Eqgs.(2-4), (2-8)2nt0)
are:

8] 0 -
Z /‘n|:I(ﬂ) _ZE(H) +AZ[£1I (n—k,k)_ZE (n-k,k) 4 {S(trI(ﬂ-k))E(k) + (3 2)
= = ksn T = = =

n=0

({GI(n*k) :E(k) _2{790140 :E(k))L] :| =0

ZA”Ll[a,(r W) +712[029(vv<">)] —AZ/\‘;‘W} =0 (3-3)

ksn

and
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1 1

02+=0, +(=0%)]2wm

AL 0 (0l o0 (4
T AT 0, (A - 0,00 )

ksn
Notice: The expansion parameter; i)e.:)\zQ, is much
smaller than unity for the range & =107 sinceA ,
is of the order 1072 to 10™*” sec. according to the

values quoted in the literature; [31-32].

\A LUTION OF THE SUCCESSIVE SET OF
EQUATIONS

4.1 ZERO-ORDER APPROXIMAION

Taking n =0, the coefficients of)\0 in Egs.(3-3) and
(3-4) are :

[% 9, (rw?) +ri2629 Wo )} =0, (4-1)
and
2 1 1 2 V120 —

[0 + =0, +(50%)] "W =0. (4-2)
with boundary conditions

wW®=0 0 at r=1a; (4-3a)
wo =Q, 0 at r=1 a. (4-3b)
Ww9=1 0 a r=1 a. (4-3c)

The solution of Eq. (4-1) which satisfies boundary
condition (4-3a) is

W@ =0. (4-4)

The boundary conditions, Eq.(4-3b)and Eq. (4-3c) ,
imposed on Eq.(4-2), imply that:

2 2
WO :% (2c,—c¢)) +c, +(c¢ +%c3)|nr . (45)
where,

= (a+1)[2Q-1+2a’Inal/(a® -1)]

5 = > 3 > , (4-6a)
[2a(a® -1 - ((a-2)° +4a“))Ina]

_ -1 @) _
CQ_az_l Aa+]) ), (4-6b)
¢ =1-¢c, , (4-
6¢C)

C, =Q—C—22+%. -(4
6d)
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Then the velocity field of zero order approximatiasing
expansion of rinr and taking the first two leadiegms is
given by

V = L|J’£0) =%(c1 +C_23) +r(c, +gc3) —2C,. (4-7)

Solutions (4-4) and (4-5) and then velocity fieddq) are
stand for a Newtonian fluid.

4.2 FIRST-ORDER APPROXIMAION
Letting N = 1, then the coefficients of in Egs. (3-3) —
(3-4) deliver the following pair of equations

10.0WE) + L0 W) AL =0, e
and

1 1 -
20+ WA 3,(AL)-0,A]=0. (49

Using Egs. (2-12), the component§®® for i=123
are given by

_ \

AP =176 -2, -0 (4-102)
AQ9 =0, (400
and

AO9 =0, (4-10c)
With boundary conditions

WP =0 0 a r=1la; (4-11a)
wo =0 0 at r=1 a. (4-11Db)
WwW=0 0 at r=1 a. (4-11c)
Using Eq. (4-11a), the solution of Eq. (4-8) is,
w®(r,8) =0 (4-12)

The solution of Eq. (4-9) using boundary

conditions, Eq. (4-11b) and Eq. (4-11c), is,
WO(r,8) =0

(4-13)
4.3 Second-order Approximation

For n=2, the coefficient ofA? in Egs. (3-3) and (3-4)

are.
[a(rvvf2>>+ &s (\Mﬂ (N +189) =0, (4-14)
and

@+0 4O AP AP ) QNPAP) . (415)

Using Eq. (2-12c), the components

A =A89 =0 (4-16a)
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9~ r3 V,

AP =r oL reG -y~ (4-16b)
Q) .2 _1 2 V

=0l TG =Y~ ) (4-160)
then Eq. (4-14) becomes
[%ar (rw?) +ri2620 0 (2))} =0 (4-17)
with the boundary conditions
w®@ =00 at r=1a (4-18)
The solution of WP is,
W@ =0 (4-19)

Also Eg. (4-15) becomes
CASERICTE )]Zuﬁ—r‘{arl(a[ S BT St %’ﬂ}c

(4-20)
which reduces to

[0 +-20,+ (O] WO =28C2,-0)G -G ear o) (42D)
With boundary conditions

W@ =0, 0 at r=1 a. (®2a)
Wﬁz) =0, 0 at r=1 a. (4-20)
The solution of (4-21) with the boundary conditiofs
22a) and (4-22b) is given as:

WO (r)= cf(§ (o= 0N =C)WO(r) (429

* 4
we ——Cr )+ Y 4-24
()= (14: TR (4-24)

where, W"is the homogeneous solution of biharmonic

equation then (4-24)becomes

YOO=( o 4c3r‘2>+j<2%-%)+84+<81+r22I%)Inr
(4-25)
where,
:(1_a2) Nlna+8C(a 7 145C1(a_l) (4 26a)
az(lna)z—i(l a’)
-8c, ,a’ +1 48c, a*+a’ +1
N=—232 4-26b
St ) @2
8c3 48c, a* +1 +a InaB,
4-26¢
(2) 145( a* ) @1-a% (4-26¢)
8 48
B,=-B, —1—103 + TaE (o} (4-26d)
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= (BBt 126

4 2 11 14F (4-26e)

And

V@ =y () {(_48

B
145"

r

+r5+%lnr}

(4-27)

8 -
rP+—cro)+
13 )

So the second order Oldroyd velocity field is
3 -48 8 _
Ve =y (1) :6(255—51)(57—(6){(q*3 ooy 3)+% +rI§+Eglnr}

145
(4-28)

V. DISCUSSION
In the present work, the steady cylindrical Couétiey of
an inertialless viscoelastic Oldroyd 8-constantdflis
investigated analytically. The flow field is credtdue to
the rotation of the inner cylinder with radiBs with a

uniform angular velocityQ) about its axis. The equation
of momentum is solved by using the method of
successive approximation through the expansionhef t
dynamical variables in power series of the retaodat

time A . Herein, up to the second-order approximation

the following results are recovered:

1- The resultant Newtonian fields streamfunction
©) ) 0 .

W™ (r) and velociyW ™ (r) =V ™ is a solid body

rotation in the & -direction, these fields component are
plotted in Fig.(1) for flow rate equal to zero aim
Fig.(2)for constant value of flow rate equal to 1.

2- The first-order approximation results in a zero
components in all directions.

3-The second-order approximation produces a stream

function® ® (r) and 6 -velocity component

(2) —\/(2): . - .
W (r)=V”in the direction of the primary flow.

This component includes 4-parametéfs s, {zand ¢,

and hence it is viscoelastic contribution.
The secondary flow represented by the stream-foimcti

WA (r)and the veIocityLP}Z) (r) =V for two cases

of flow rates are plotted in Fig.(2) and Fig.(3)n¢ this
flow is affected by six parameters; namely, and /]1

through /17 it is being an effect of Oldroyd 6-constant
fluid.
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Zero order streamfunction and velocity

Fig.1:Zero order streamfunction and velocity field versus

cylindrical radii r frominner cylinder to outer cylinder
for flow rate Q=0

Zero order Streamfunction and velocity
®
1

Fig.2:Zero order streamfunction and velocity field versus

cylindrical radii r frominner cylinder to outer cylinder
for flow rate Q=1
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Fig.3: Second order streamfunction and velocity field
versus cylindrical radii r from inner cylinder to outer
cylinder for flow rate Q=0
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Fig.4: Second order streamfunction and velocity field
versus cylindrical radii r from inner cylinder to outer
cylinder for flow rate Q=1
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VI CONCLUSION
No. | Name of the mode| Constants included
1- | Newtonian fluid(1-| n,;
const.) A =0 fori=1..7.
2- | Upper- convicted | 77,,4;; A =0 for
Maxwell fluid (2- i=2..7.
const.)
3- | Oldroyd-B fluid Mo M. Ay A =0
(3-const) fori=3...7.
4- | Fluid of second- | n,, A,,A4; A =0  for
order (3-const.) i = 13567 .
5- | GordonSchowalter Mo A :Z_Z/]li Ay = &N,
or Johnson
Segalman model | 44 =¢42, 4 =0
(4-const.) for i=567. 1, isthe
solvent viscosity.

The present work deals with the behavior of a \@&zstic
fluid in the cylindrical Couette flow by using Otayd 8-
constant model. The inner cylinder is rotating with
angular velocity Q while the outer cylinder is kept at
rest. At present, the solution of the momentum 8qona
has been performed up to the second-order. Thd fiel
variables are expanded in power series in termthef

dimensionless retardation parametér The zero-order
velocity V@ (r) is the Newtonian flow which is pure
rotation about the z-axis. The second order stream-
WA(r)and 6 -velocity

function component

2 — 2 . . L
LIJ’P (r)=V® are being secondary flow which is in

the direction of the primary flow. The second-order
approximation gives a viscoelastic contribution, ickh
depends on the geometry of the annular region #sawse

on all the material parametetg, and /11 to )\7.

Appendix A
1.Table (A-1): Constitutive equations included ildi@yd
8-constant model as special cases. Here, we makefus
Oldroyd's suggestion [27,30,31] which reduces tbeeh
to 6-parameters model by assuming thdt = A, =0
2. Approximation method
The vector/\

in Egs. (17), can be found through the relations:

defined by Eg. (2-12), or its components

o 0O
The components ofT , D and (trT)D
()The tensorsD and T have the components shown in
Table (A-1)
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T | @@ | ZZ | 76+67 | fZ+2F| &2 +26
D, [0 | Ui W, | UV | W, | Vg
r : 2 x
T, | T T T,=T, T,=T
ij THH 7z TI’HZTQ rz zr 6z 26

(i) The components of an upper-convicted tengor

(which may be eitheD or T ) are given by the relations

m] \V/ U,@

Arr =U'A\'r,r +T'A¥r,¢9 - 2U,r A _ZT Ag (A-2a)
g V U +V§ V —rVr

Ago =Uhyq, "'7'6\95,9‘2 ; Ao =2 ; Ay (A-2b)

,%\zz =UA,, +\%Azz,6 -+2W A, - 2% A, (A-2c)
/Dqu'ﬂ% UA, +\{ ,g—UHL:r +V, V rVAr A% (A-2d)
A= =UA, +¥ Ay —V+Uﬂ r—i A,~UA, (A-2e)
Pe=As =UA, +¥A&g U+V op, - ABH—WAB Vv A, (A-2)

(iif) The components of the divergenceéf are:
I]

(D A) =TI 10 (rArr)+ 6 (ArH)_T (A3a)

(0. z\)g =r7%0,(r? Are) +?69(A99), (A-3b)
0O ~ 0O 1 O

(0.A),=r"9,(rAz) +765(A&). (A-3c)
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