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Abstract—The steady flow of an incompressible Oldroyd 
8-constant fluid in the annular region between two 
concentric cylinders, or so-called cylindrical Couette 
flow, is investigated. The inner cylinder rotates with an 
angular velocity Ω  about its own axis, z-axis, while the 
outer cylinder is kept at rest. The viscoelasticity of the 
fluid is assumed to dominate the inertia such that the 
latter can be neglected in the momentum equation. An 
analytical solution is obtained through the expansion of 
the dynamical variables in power series of the 
dimensionless retardation time. The primary velocity term 
denotes the Newtonian rotation about the z-axis. The 
first-order is a vanishing term. The second-order results 
in a secondary flow represented by the stream-function. 
This second-order term is the viscoelastic contribution to 
the primary viscous flow. The second-order 
approximation depends on the four viscometric 
parameters of the fluid.  
Keywords—cylindrical Couette flow, Oldroyd 8-constant 
model, secondary flow. 
 

I.  INTRODUCTION  
Fluid flow in the annular region between two rotating 
objects has attracted the attention for the last few decades 
in many branches of industries and technology [1-6]. One 
of these flow problems is the viscous and viscoelastic 
flow between two cylinders. Fluids are generally 
classified based on their rheological properties. The 
simplest classification is Newtonian fluid. These fluids 
are represented using Navier-Stokes theory. The fluids 
which do not obey Newton’s law of viscosity are 
described as non- Newtonian fluids. Examples of such 
fluids are blood, saliva, semen, lava, gums, slurries, 
emulsions, synovial fluid, butter, cheese, jam, ketchup, 
soup, mayonnaise etc.  
Numerous models, or so called constitutive equations, 
have been proposed to describe the response of fluids that 
cannot be characterized by the classical Navier-Stokes 
fluid model. The progress of any constitutive equation 
based on the investigated rheolegical properties of a fluid 
behavior under consideration simplest constitutive 

equation for a fluid is a Newtonian one and the classical 
Navier-Stokes theory is based on this equation. The 
mechanical behavior of many fluids is well enough 
described by this theory. However, there are many 
rheologically complicated fluids such as polymer 
solutions, blood and certain oils, suspensions, liquid 
crystals in industrial processes with non-linear 
viscoelastic behavior that cannot be described by a 
Newtonian constitutive equation, as it does not reflect any 
relaxation and retardation phenomena.  
In recent years, the interest for non-Newtonian fluid flows 
has considerably increased and many exact solutions have 
been obtained [7-10]. For this reason, many models have 
been proposed in which fluids are usually classified as of 
differential rate and integral types [11]. The differential 
type models are used to describe the response of the fluids 
which have slight memory such as dilute polymeric 
solutions whereas the integral models are used to describe 
the response of the fluids which have considerable 
memory such as polymeric melts. A large number of non-
Newtonian fluid models are concerned with the fluids of 
grade two and three, but these fluids do not predict stress 
relaxation and retardation. Models of the Maxwell, 
Oldroyd-B and Burgers'fluid type can predict these 
phenomena, and have therefore become more popular. 
The Oldroyd-B fluid model [12] which takes into account 
elastic and memory effects exhibited by most polymeric 
and biological liquids, has been used quite widely in 
many applications and the results of simulations to 
experimental data in a wide range.[13] The Oldroyd-B 
fluids belong to the class of rate type fluid models[14-22]. 
Generally, there exist three kinds of boundary value 
problems: (1) when the velocity is given on the boundary; 
(2) when the shear stress is given on the boundary and (3) 
mixed boundary value problems. From the applications 
point of view, the first one of boundary value problems 
are of interest. Axial flow in an annulus between a 
rotating inner cylinder and a fixed outer cylinder has 
several important engineering applications including 
journal bearings, biological separation devices, rotating 
machinery, desalination to magneto hydrodynamics and 
also in viscosimetric analysis[23-25].  



International Journal of Advanced Engineering, Management and Science (IJAEMS)                     [Vol-1, Issue-9, Dec- 2015] 

Infogain Publication (Infogainpublication.com)                                                                                                          ISSN : 2454-1311 

www.ijaems.com                                                                                                                                                                            Page | 22  

  

At present, the flow field of an incompressible Oldroyd 8-
costant fluid in the annular region between two concentric 
cylinders is investigated. The inner cylinder rotates with a 

uniform velocity Ω  about its own z-axis centered in the 
origin of the system and the outer cylinder is being at rest. 
The suggested Oldroyd 8-costant constitutive equation is 
linear in the stresses alone and contains all possible terms 
quadratic in the stress and the velocity-gradient 
components consistent with giving a symmetric stress 
tensor. Moreover, this model already presents a 
considerable simplification with respect to general models 
of simple fluids. Hence, this model can describe more 
rheological behaviors method of solution and the obtained 
results. 
 

II.  FORMULATION OF PROBLEM 
A viscoelastic fluid moves in the annular space between 

two concentric cylinders of radii 1R   and  2R  ( 12 RR > ). 

The motion is due to the rotation of the inner cylinder 
with angular velocity Ω  about its axis , z-axis, while the 
outer cylinder is kept at rest.  
2.1 DIMENSIONLESS VARIABLE  
In the present work, for the dimensional variable-

quantities; namely, the length r~ , velocity v , 

deformation tensor d , stress tensor t , pressure p and 

the stream-functionψ , it is more convenient to introduce 

the following dimensionless variables in terms of non-

dimensional cylindrical polar coordinates ),,( zr θ  , 
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where, the non-dimensionality is obtained by using 1R , 

Ω  and Ω0η  as the characteristic length, time and stress; 

respectively. 
2.2 CONSTITUTIVE EQUATION 
To get a comprehensive idea about the behavior of a 
viscoelastic fluid, we adopted the Oldroyd 8-costant 
model in the present work. This model represents one of 
the most general constitutive equations for the last four 
decades, Zmievski et al.[26], and it includes a number of 
frequently used constitutive equations as special cases 
[27,28,29]; (see Table (A-1) of appendix A). Here, we 
shall use Oldroyd's suggestion [27,30,31] which reduces 
the model to 6-parameters model by assuming that 

043 == λλ  

Oldroyd constitutive equation relates the stresses and the 
kinematic variables through the non-dimensional 
equation; [30],  
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where T ,  ])()[(2
1 TVVD ∇+∇=  and I  are the extra-

stress, the rate of deformation and the unit tensors; 

respectively. The material constants oη  , 1λ  and 2λ   

are the viscosity, the relaxation and retardation times ; 

respectively,  while 3λ … 7λ  are further material time 

constants ,  excT  is the Cauchy stress tensor. The 

upper-convected derivative for any symmetric tensor G  

is defined by  
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2.3 THE CONTINUITY AND MOMENTUM 
EQUATION  
The dimensionless velocity field may be written as 

]ˆ)(,ˆ)(,ˆ)([( zrWrVrrUV θ=   .                         (2-3)                                                                               

The continuity equation is satisfied identically by 
introducing a stream-function defined by 

)ˆ(ˆˆ zVrUU ψθ ∧∇−=+=⊥ .                            (2-4) 

We assume that the forces due to viscoelasticity are 

dominated such that the inertial term  VV ∇⋅  is negligible 

in the momentum equation. Thus, for steady state the 

momentum equation; 0=⋅∇+∇− TP , is given by 
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The perturbation term, Eq. (2-2b), is abbreviated in 

Eq. (2-5) by the vector ),( θrΛ and the scalar 

),( θrG defined by the expressions  






 −+⋅∇=Λ
∇∇
DDTtrTr 2)(),( 51 ξξθ               (2-6a) 

[ ]DDDTrG :2:),( 76 ξξθ −=  ,                       (2-6b) 

Hence, the momentum equation, Eq.(2-5), can be 
factorized into the pair of equations 

(i)  0ˆ)ˆ( 3
2 =Λ−∇ zzW λ  ,    Λ⋅=Λ ẑ3  ,         (2-7) 

Which reduces to the scalar equation 
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 (ii) 0)(2 =−∇−Λ−∇ ⊥⊥ GPU λ  ;  3ˆΛ−Λ=Λ⊥ z  ,  (2-9)                                             



International Journal of Advanced Engineering, Management and Science (IJAEMS)                     [Vol-1, Issue-9, Dec- 2015] 

Infogain Publication (Infogainpublication.com)                                                                                                          ISSN : 2454-1311 

www.ijaems.com                                                                                                                                                                            Page | 23  

  

 Taking the curl of Eq.(2-9) and substituting from Eq.((2-
4), we get the scalar equation 
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Where, 

θ̂ˆ 21 Λ+Λ=Λ ⊥ r  .                                                    (2-11) 

The components of Λ are given as: 
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Where,  )(TtrTTT zzrr =++=Γ θθ .  

The components of the tensors T ,  
∇
T , D  and

∇
D  are 

given in appendix (A). 
2.4  BOUNDARY CONDITIONS 
The boundary conditions imposed on the functions W and 
Ψ  are:  

0,0=W      at       ar ,1= ;      12 / RRa = ,     (2-13a)  

0,Q=Ψ        at          ar ,1= .                      (2-13b) 

0,1, =Ψ r         at          ar ,1= .                      (2-13c) 

where Q is the flow rate.Then, using Eqs. (2-8) and (2-
10), the functions W  and Ψ  are determined.  
 

III.  METHOD OFSOLUTION 
Expanding the functions  TDW ,,,Ψ  and P   in power 

series of the parameter λ   as follows 
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where A  may represents any of the above functions. 
Consequently, the expansion of Eqs.(2-4), (2-8)and (2-10) 
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Notice: The expansion parameter; i.e. Ωλ=λ 2 , is much 

smaller than unity for the range of 
210≈Ω  since 2λ  

is of the order ‘‘ 210−  to 410− ” sec.  according to the 
values quoted in the literature; [31-32]. 

 
IV.   LUTION OF THE SUCCESSIVE SET OF 

EQUATIONS  
 
4.1  ZERO-ORDER APPROXIMAION 

Taking  0=n , the coefficients of 0λ  in Eqs.(3-3) and 

(3-4) are : 
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0,)0( Q=Ψ        at          ar ,1= .                    (4-3b) 
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The solution of Eq. (4-1) which satisfies boundary 
condition (4-3a) is  
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The boundary conditions, Eq.(4-3b)and Eq. (4-3c)  , 
imposed on Eq.(4-2), imply that:  
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Then the velocity field of zero order approximation using 
expansion of rlnr and taking the first two leading terms is 
given by 

332
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1
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Solutions (4-4) and (4-5) and then velocity field (4-7) are 
stand for a Newtonian fluid. 
 
4.2 FIRST-ORDER APPROXIMAION 

Letting 1=n , then the coefficients of λ  in Eqs. (3-3) – 

(3-4) deliver the following pair of equations  
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Using Eqs. (2-12), the components 3,2,1)0,0( =Λ ifori  

are given by 
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With boundary conditions 
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0,0)1( =Ψ        at          ar ,1= .                   (4-11b)                                                                                               
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, =Ψ r         at          ar ,1= .                     (4-11c)                                                                                                

Using Eq. (4-11a), the solution of Eq. (4-8) is, 

0),()1( =θrW                                                             (4-12) 

The solution of Eq. (4-9) using boundary 
conditions, Eq. (4-11b) and Eq. (4-11c), is, 
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                                                    (4-13) 
4.3 Second-order Approximation 

For 2=n , the coefficient of 2λ  in Eqs. (3-3) and (3-4) 
are: 
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Using Eq. (2-12c), the components 
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then Eq. (4-14) becomes 
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with the boundary conditions  
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The solution of W(2) is, 
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 which reduces to  
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With boundary conditions 
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, =Ψ r         at          ar ,1= .                    (4-22b)                                                                                               

The solution of (4-21) with the boundary conditions (4-
22a) and (4-22b) is given as: 
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where, hΨ is the homogeneous solution of biharmonic 
equation then (4-24)becomes 
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So the second order Oldroyd velocity field is 
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V.  DISCUSSION 
In the present work, the steady cylindrical Couette flow of 
an inertialless viscoelastic Oldroyd 8-constant fluid is 
investigated analytically. The flow field is created due to 

the rotation of the inner cylinder with radius1R  with a 

uniform angular velocity Ω  about its axis. The equation 
of momentum is solved by using the method of 
successive approximation through the expansion of the 
dynamical variables in power series of the retardation 

time λ . Herein, up to the second-order approximation 

the following results are recovered: 
1- The resultant Newtonian fields streamfunction 

)()0( rΨ  and velocity )0()0(
, )( Vrr =Ψ  is a solid body 

rotation in the θ -direction, these fields component are 

plotted in Fig.(1) for flow rate equal to zero and in 
Fig.(2)for constant value of flow rate equal to 1. 
2- The first-order approximation results in a zero 
components in all directions. 
3-The second-order approximation produces a stream 

function )()2( rΨ and θ -velocity component 

)2()2(
, )( Vrr =Ψ in the direction of the primary flow. 

This component includes 4-parameters 7651 ,, ζζζζ and  

and hence it is viscoelastic contribution.  
The secondary flow represented by the stream-function 

)()2( rΨ and the velocity )2()2(
, )( Vrr =Ψ  for two cases 

of flow rates are plotted in Fig.(2) and Fig.(3). Since this 

flow is affected by six parameters; namely, oη  and 1λ   

through 7λ  it is being an effect of Oldroyd 6-constant 

fluid. 

 
Fig.1:Zero order streamfunction and velocity field versus 
cylindrical radii r from inner cylinder to outer cylinder 

for flow rate Q=0 

 
Fig.2:Zero order streamfunction and velocity field versus 
cylindrical radii r from inner cylinder to outer cylinder 

for flow rate Q=1 

 
Fig.3:Second order streamfunction and velocity field 
versus cylindrical radii r from inner cylinder to outer 

cylinder for flow rate Q=0 

 
Fig.4:Second order streamfunction and velocity field 
versus cylindrical radii r from inner cylinder to outer 

cylinder for flow rate Q=1 
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VI.  CONCLUSION 

 
The present work deals with the behavior of a viscoelastic 
fluid in the cylindrical Couette flow by using Oldroyd 8-
constant model. The inner cylinder is rotating with 
angular velocity Ω  while the outer cylinder is kept at 
rest. At present, the solution of the momentum equation 
has been performed up to the second-order. The field 
variables are expanded in power series in terms of the 
dimensionless retardation parameter λ . The zero-order 

velocity )()0( rV  is the Newtonian flow which is pure 

rotation about the z-axis. The second order stream-

function )()2( rΨ and θ -velocity component 

)2()2(
, )( Vrr =Ψ  are being secondary flow which is in 

the direction of the primary flow. The second-order 
approximation gives a viscoelastic contribution, which 
depends on the geometry of the annular region as well as 

on all the material parameters 0η  and 1λ  to 7λ . 

Appendix A 
1.Table (A-1): Constitutive equations included in Oldroyd 
8-constant model as special cases. Here, we make use of 
Oldroyd's suggestion [27,30,31] which reduces the model 

to 6-parameters model by assuming that 043 == λλ  

2. Approximation method                                              

The vector Λ  defined by Eq. (2-12), or its components 

in Eqs. (17), can be found through the relations:                                                                                 

The components of 
∇∇
DT ,  and DTtr )(  

(i)The tensors D and T   have the components shown in 

Table (A-1) 

rrˆˆ  θθ ˆˆ  ZZ ˆˆ  rr ˆˆˆˆ θθ +
 

rZZr ˆˆˆˆ +
 

θθ ˆˆˆˆ ZZ +
 

ijD  

 

ijT  

U,r 

 

rrT
 

r

VU θ,+

 

θθT  
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r

VrVU r

2
,, −+θ

 

rr TT θθ =
 

2
,, Zr UW+

 

zrrz TT =
 

r

rVW z

2
,, +θ  

θθ zz TT =
 

 (ii) The components of an upper-convicted tensor A  

(which may be either D  or T ) are given by the relations  

θ
θ

θ rrrrrrrrrrr A
r

U
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r

V
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,,, 22 −−+=
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 (iii) The components of the divergence of 
∇
A  are: 

r

A
A

r
ArrA rrrrr

θθ
θθ

∇
∇∇

−
∇

−∂+∂=∇ )(
1

)().( 1  ,(A-3a) 
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1
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r
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zrzrz A

r
ArrA θθ

∇∇
−
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