Overview of Important Algorithms to mine Frequent Patterns from Uncertain Data

Vani Bhogadhi¹, Dr. M. B. Chandak²

¹Student (M.Tech), Department of Computer Science and Engineering, RCOEM, Nagpur, Maharashtra, India
²Head, Department of Computer Science and Engineering, RCOEM, Nagpur, Maharashtra, India

Abstract— In this paper, we focus on some of the important algorithms used in mining frequent patterns from uncertain data. The algorithms discussed are UF-growth, CUF-growth, PUF-growth, tubeS-growth, tubeP-growth. Uncertainty in data is caused by factors like data randomness, data incompleteness, etc. In some circumstances, users are interested in only some of the frequent patterns instead of all. The user can express his interest in terms of constraints and push them into the mining process as a result, the search space is reduced which is termed as constrained mining. Finally, big data has brought tools for the problem of frequent pattern mining of uncertain data.

Keywords— big data, constrained mining, data randomness, Frequent pattern mining, uncertain data.

1. INTRODUCTION

1.1 Frequent Pattern Mining
Finding frequent patterns plays an essential role in association rule mining, classification, clustering, and other data mining tasks. Frequent pattern mining [17, 19] was first proposed by Agrawal et al.[17] for market basket analysis in the form of association rule mining. It analyses customer buying habits by finding associations between the different items that customers place in their “shopping baskets”. Let \(I = \{i_1, i_2, \ldots, i_n\} \) be a set of all items. A k-itemset \(\alpha \), which consists of k items from I, is frequent if \(\alpha \) occurs in a transaction database D no lower than \(\theta|D| \) times, where \(\theta \) is a user-specified minimum support threshold (called min_sup), and \(|D| \) is the total number of transactions in D.

1.2 Uncertainty in Data

How much faith can or should be put in the Social media data like Tweets, Facebook posts, etc. Correlation of the data with persons, locations, associations, etc can somewhat reduce uncertainty but cannot completely eliminate it. Sure, this data can be used as a count toward sentiment, but cannot be used as a count for total sales and report on that. Due to measurement errors, but also sensor malfunctions, approximation errors, sampling errors, etc sensor data is highly uncertain as well. Due to the sheer velocity of some data (like stock trades, or machine/sensor generated events), time cannot be spent to “cleanse” it and get rid of the uncertainty, so data must be processed as is i.e. understanding the uncertainty in the data. Nowadays, as multi-structured data is being brought together, it is nearly impossible to determine the origin of the data and correlate fields.

Data can be obsolete (e.g., when a dynamic database is not up-to-date), data may originate from unreliable sources (such as crowd-sourcing), the volume of the dataset may be too small to answer questions reliably, or Data may be blurred to prevent privacy threats and to protect user anonymity. The challenge in handling uncertain data is to obtain reliable results despite the presence of uncertainty.

1.3 Probabilistic Model for Uncertain Data
Users may not be certain about the presence or absence of an item \(x \) in a transaction \(t_i \) in a probabilistic dataset D of uncertain data [20]. Users may suspect, but cannot guarantee, that \(x \) is present in \(t_i \). The uncertainty of such suspicion can be expressed in terms of existential probability \(P(x, t_i) \), which indicates the likelihood of \(x \) being present in \(t_i \) in D. The existential probability \(P(x, t_i) \) ranges from a positive value close to 0 (indicating that \(x \) has an insignificantly low chance to be present in D) to a value of 1 (indicating that \(x \) is definitely present). With this notion, each item in any transaction in traditional databases of precise data (e.g., shopper market basket data) can be viewed as an item with a 100 % likelihood of being present in such a transaction.

1.4 Objectives of the Paper

U-Apriori, UF-growth, CUF-growth, PUF-growth, tubeS and tubeP algorithms which find frequent patterns from probabilistic datasets of uncertain data are studied for their advantages and drawbacks. Constrained frequent pattern mining is briefly discussed. The idea of usage of MapReduce framework work for extending the above mentioned uncertain frequent pattern algorithms in Big Data area are deliberated.
II. FREQUENT PATTERN MINING OF UNCERTAIN DATA

Uncertain frequent pattern mining from a probabilistic dataset D of uncertain data is to find every pattern X having \(\expSup(X,D) \geq \minsup \). Such a pattern X is called an expected support-based frequent pattern or just frequent pattern. Finding frequent patterns from uncertain data started with candidate generate-and-test paradigm and now replaced with tree-based mining due to its advantages.

2.1 Uncertain Frequent Pattern Mining using candidate generate-and-test paradigm (U-Apriori)

Chui et al. proposed U-Apriori algorithm [1], a modification of Apriori algorithm [17] that mines frequent patterns from uncertain data. U-Apriori algorithm uses candidate generate-and-test paradigm in a breadth-first bottom-up fashion.

U-Apriori Algorithm:

Step 1: computes the expected support of all domain items. Those items with expected supports \(\geq \minsup \) become every frequent pattern consisting of one item.

Step 2: the algorithm repeatedly applies the candidate generate-and-test process to generate candidate \((k+1)-\)itemsets from frequent \(k\)-itemsets and test if they are frequent \((k+1)-\)itemsets.

The algorithm’s efficiency can be improved by including the LGS-trimming strategy (local trimming, global pruning, and single-pass patch up) [1]. This strategy trims away every item with an existential probability below the user-specified trimming threshold (which is local to each item) from the original probabilistic dataset \(D\) of uncertain data and then mines frequent patterns from the resulting trimmed dataset \(D_{\text{Trim}}\). On the one hand, if a pattern \(X\) is frequent in \(D_{\text{Trim}}\), then \(X\) must be frequent in \(D\).

U-Apriori algorithm suffers from the following problems:

- there is an overhead in creating \(D_{\text{Trim}}\)
- only a subset of all the frequent patterns can be mined from \(D_{\text{Trim}}\) and there is overhead to patch up
- the efficiency of the algorithm is sensitive to the percentage of items having low existential probabilities
- it is not easy to find an appropriate value for the user-specified trimming threshold
- there are multiple scans involved

2.2 Uncertain Frequent Pattern Mining using Tree Structures

The candidate generate-and-test based mining algorithms (e.g., the U-Apriori algorithm) use a levelwise bottom-up breadth-first mining technique to find frequent patterns from uncertain data. As an alternative to Apriori-based, tree-based mining avoids generating many candidates. Tree-based algorithms use a depth-first divide-and-conquer approach to mine frequent patterns from a tree structure that captures the contents of the probabilistic dataset.

The UF-growth is a tree-based algorithm for mining uncertain data to find the frequent itemsets proposed by Leung et al. [10]. The two main steps in this algorithm are:

- the construction of UF-trees
- mining of frequent patterns from UF-trees.

While construction of the UF-tree each node captures an item, its expected support and the number of occurrence of such expected support for such an item. The UF-growth algorithm constructs the UF-tree as follows: It scans the database once and accumulates the expected support of each item. Hence, it’s all frequent items (i.e., items having expected support \(\geq \minsup\)). It sorts these frequent items in descending order of accumulated expected support. The algorithm then scans the database the second time and inserts each transaction into the UF-tree.

2.3 CUF Tree Structure

Leung and Tanbeer[2] proposed the capped uncertain frequent pattern tree (CUF-tree) structure, which uses the tree structure to represent the items of the transaction and also extracts the frequent patterns from the tree. Here the CUF-tree is constructed by considering an upper bound of existential probability for each transaction which is called as the cap of the transaction existential probability.

Definition: The transaction cap of a transaction \(t\), denoted as \(P^{\text{cap}}(t)\), is defined as the product of the two highest existential probability values of items within \(t\). Let \(h=|t|\) represent the length of \(t\), \(M_1 = \max_{x\in[t]} P(x,t)\) and \(M_2 = \max_{x\in[t]} P(x,t)\).

\[
P^{\text{cap}}(t) = \begin{cases}
M_1 \times M_2 & \text{if } h > 1 \\
P(x,t) & \text{if } h = 1
\end{cases} \quad (1)
\]

Where the \(P^{\text{Cap}}(t)\) provides users with an upper bound of existential probability values of all possible \(k\)-itemsets (where \(k > 1\)) in each transaction.

The cap of expected support of an itemset \(X\), denoted as \(\expSup^{\text{cap}}(X)\), is defined as the sum of all transaction caps of \(t\) in which \(X\) occurs, \(\expSup^{\text{cap}}(X) = \sum_{t=1}^{n} P^{\text{cap}}(t)\) where \(n=|DB|\).

TABLE I. A TRANSACTION DATABASE USING MINSUP=1.0
CUF Tree Construction Algorithm:

The CUF-tree is constructed in two database scans.

- In the first scan of the database, the expected support of each domain item is calculated, thereby removing infrequent items, and then all frequent items are sorted in descending order of their total expected support.
- In the second scan of the database, CUF-tree is constructed and the transaction caps are calculated at the same time.
- Items of the transaction are inserted into the CUF-tree according to the sorted list order, and the transaction cap value is added to each node according to the sorted list order.

Consider Table 1 with four transactions, and let the minsup be 1.0. The above algorithm computes the expected support of each item as \{a: 2.3, b:1.4, c:2.2, d:0.9, e:1.8\}, removes infrequent items from the list, and arranges the remaining items in sorted order results in item-list \{a:2.3, c:2.2, e:1.8, b:1.4\}. Then in the second scan of the database, transaction cap of each transaction are calculated and CUF Tree is constructed. Only frequent items are considered while calculating the transaction cap which results in the tighter upper bound for the construction of the CUF Tree and eventually generates less number of false positives. The initial and the final item caps and their corresponding CUF-trees after removing the infrequent items are shown in the Figure 1.

The CUF-growth algorithm is responsible for constructing the projected databases and mining frequent patterns from uncertain data. It scans the database three times to extract the frequent patterns. The algorithm calculates the transaction caps in its first scan and builds the CUF-tree during its second scan. The tree stores the item and the transaction caps, which act as the upper bounds to the expected support of frequent \(k\)-itemsets (for \(k \geq 2\)). The last step in the algorithm during the second scan is to discover all possible frequent patterns by extracting suitable tree paths from subsequent projected databases. There may be some infrequent patterns (false positives) so the algorithm again scans the dataset for the third time to check whether all the frequent patterns retrieved during the second scan are truly frequent patterns or not and trims the false positives.

Table 1: A TRANSACTION DATABASE USING MINSUP=0.5

<table>
<thead>
<tr>
<th>TID</th>
<th>Contents</th>
<th>Contents(after 1st scan)</th>
<th>p(^{Cap})</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>{a:0.5, b:0.8, c:0.5, e:0.6}</td>
<td>{a:0.5, b:0.8, c:0.5, e:0.6}</td>
<td>0.48</td>
</tr>
<tr>
<td>t2</td>
<td>{a:0.7, b:0.6, c:0.6, d:0.7}</td>
<td>{a:0.7, b:0.6, c:0.6}</td>
<td>0.42</td>
</tr>
<tr>
<td>t3</td>
<td>{a:0.3, c:0.8, e:0.5}</td>
<td>{a:0.3, c:0.8, e:0.5}</td>
<td>0.40</td>
</tr>
<tr>
<td>t4</td>
<td>{a:0.8, c:0.3, d:0.2, e:0.7}</td>
<td>{a:0.8, c:0.3, e:0.7}</td>
<td>0.56</td>
</tr>
</tbody>
</table>

2.4 PUF Tree Structure

Leung and Tanbeer[3] proposed the PUF-tree which is constructed by considering an upper bound of existential probability value for each item when generating a \(k\)-itemset (where \(k > 1\)). We call the upper bound of an item \(x\) in a transaction \(t\) the (prefixed) item cap of \(x\) in \(t\), as defined below.

Definition: The (prefixed) item cap \(I^{Cap}(x, t)\) of an item \(x\) in a transaction \(t = \{x_1, . . . , x_r, . . . , x_h\}\), where \(1 \leq r \leq h\), is defined as the product of \(P(x, t)\) and the highest existential probability value \(M\) of items from \(x_1\) to \(x_{r-1}\) in \(t\) (i.e., in the proper prefix of \(x\) in \(t\)):

\[
P(x, t) \times M \quad \text{if } h > 1,
\]

\[
P(x, t) \quad \text{if } h = 1
\]

The cap of expected support \(\expSup^{Cap}(X)\) of a pattern \(X = \{x_1, . . . , x_m\}\) (where \(m > 1\)) is defined as the sum (over all \(n\) transactions in a DB) of all item caps of \(x_m\) in all the transactions that contain \(X\): \(\expSup^{Cap}(X) = \sum_{t}^{n} I^{Cap}(x_m, t) | X \subseteq t\)

TABLE II: A TRANSACTION DATABASE USING MINSUP=0.5
The PUF-growth algorithm takes three scans of the probabilistic dataset of uncertain data to mine frequent patterns.

- In the first scan, PUF-growth computes the prefixed item caps.
- During the second scan, PUF growth builds a PUF-tree and stores the item and its corresponding prefixed item cap.
- By the end of the second scan PUF-growth finds all the frequent patterns by forming the PUF-trees for subsequent projected databases.

Finally in the third scan it verifies each frequent pattern is truly frequent by pruning the false positives.

CUF and PUF-growth algorithms construct tree structures with the help of item caps where the size of the trees are very small when compared with the UF-tree. PUF-growth is faster than CUF-growth. We can obtain a compact tree structure by further reducing the upper bound on expected support results in a tree structures, called tube-trees namely tubeS and tubeP-trees [23].

2.5 TubeS Tree Structure

Leung and Tanbeer [23] proposed the TubeS-tree which is constructed by considering the second highest existential probability value in the proper prefix for each transaction generating a k-itemset (where k > 1).

Each path in the tree represents a transaction and in turn each node in the tree maintains (i) an item x_h in a transaction $t_i = \{x_1, \ldots, x_r\}$, (ii) its item cap $f^{cap}(x_h,t_i)$, and (iii) the second highest probability $M_l(x_h,t_i)$ in the proper prefix $\{x_1, \ldots, x_{r-1}\} \subseteq t_i$. The tightened upper bound to expected support on a second highest existential probability (tubeS) for $X=\{x_1, \ldots, x_r\} \subseteq t_i$ is calculated as:

$$tubeS(X, t_i) = \begin{cases} f^{cap}(X, t_i) \times \pi_{i+1}^{k-2} M_l(x_r, t_i) & \text{if } k \leq 2 \\ f^{cap}(X, t_i) \times \pi_{i}^{k-2} P(x_r, t_i) & \text{if } k \geq 3 \end{cases} \tag{3}$$

where $M_l(x_h,t_i)$ is the second highest existential probability value among all r-1 items in the proper prefix $\{x_1, \ldots, x_{r-1}\} \subseteq t_i$ and $f^{cap}(x_h,t_i)$ value is taken from Equation(2).

2.6 TubeP Tree Structure

Each node in the tree maintains (i) an item x_h in a transaction $t_i = \{x_1, \ldots, x_r\} \subseteq t_i$, (ii) its item cap $f^{cap}(x_h,t_i)$, and (iii) its existential probability $P(x_h, t_i)$. With this information, another tightened upper bound to expected support based on existential probabilities of prefix item (tubeP) for $X=\{x_1, \ldots, x_r\} \subseteq t_i$ is calculated as:

$$tubeP(X, t_i) = \begin{cases} f^{cap}(X, t_i) \times \pi_{i+1}^{k-2} M_l(x_r, t_i) & \text{if } k \leq 2 \\ f^{cap}(X, t_i) \times \pi_{i}^{k-2} P(x_r, t_i) & \text{if } k \geq 3 \end{cases} \tag{4}$$

where $P(x_h, t_i)$ is the existential probability of $x_h \in t_i$.

The second highest existential probability value $M_l(x_h,t_i)$ and the $P(x_h, t_i)$ value that are used in both tubeS and tubeP-growth guarantees not to generate high cardinality candidates due to their expected support caps being closer to the actual expected support.
III. CONSTRAINED UNCERTAIN FREQUENT PATTERN MINING

The CUF-growth and PUF-growth algorithms are useful in finding all the frequent patterns from probabilistic datasets of uncertain data in many situations. There are many real-life situations in which the user is interested in only some frequent patterns. Finding all frequent patterns would then be redundant and waste lots of computation. This leads to constrained mining [5, 6, 7, 8, 9] that aims in finding only those frequent patterns that are interesting to the user. In response, Leung et al. [10, 11] extended the UF-growth algorithm to mine probabilistic datasets of uncertain data for frequent patterns that satisfy user-specified constraints resulting algorithm, called U-FPS [10] which effectively find constrained frequent patterns from uncertain data.

Users typically employ their knowledge of the application or data to specify rule constraints for the mining task. In general, an efficient frequent pattern mining processor can prune its search space during mining in two major ways: pruning pattern search space and pruning data search space. Based on how a constraint may interact with the pattern mining process, there are five categories of pattern mining constraints antimonotonic, monotonic, succinct, convertible and inconvertible.

Antimonotonic: If an itemset does not satisfy the rule constraint, none of its supersets can satisfy the constraint. Monotonic: When an item set S satisfies the constraint, so does any of its superset.

Succinct Constraints. This constraint enumerates all and only those sets that are guaranteed to satisfy the constraint. Once the UF-tree is constructed, the U-FPS(SAM)[10] algorithm recursively mines frequent patterns that satisfy SAM constraints from this tree in a similar fashion as in the FP-growth[4] algorithm. The U-FPS effectively mines from uncertain data all and only those frequent patterns that satisfy the user-specified SAM constraint.

IV. UNCERTAIN FREQUENT PATTERN MINING FROM BIG DATA

"Big Data"[12] is a term used to describe a massive volume of diverse data, both structured and unstructured, that is so large and fast-moving that it’s difficult or impossible to process using traditional databases and software technology. In most enterprise scenarios, the data is too enormous, streaming by too quickly at unpredictable and variable speeds, and exceeds current processing capacity.

In 2012, Gartner revised and gave a more detailed definition [21, 22] as: Big Data are high-volume, high-velocity, and/or high-variety information assets that require new forms of processing to enable enhanced decision making, insight discovery and process optimization”. More generally, a data set can be called Big Data if it is formidable to perform capture, curation, analysis and visualization on it at the current technologies. MapReduce[14] is a software framework which facilitates the user to write applications to process huge amounts of data, in parallel, on large clusters of commodity hardware in a reliable manner. MapReduce is a processing technique and a program model for distributed computing based on java. The MapReduce algorithm contains two important tasks, namely Map and Reduce. Map takes a set of data and converts it into another set of data, where individual elements are broken down into tuples (key/value pairs). Secondly, reduce task, which takes the output from a map as an input and combines those data tuples into a smaller set of tuples. The major advantage of MapReduce is that it is easy to scale data processing over multiple computing nodes. Once we write an application in the MapReduce form, scaling the application to run over hundreds, thousands, or even tens of thousands of machines in a cluster is merely a configuration change. This simple scalability is what has attracted many programmers to use the MapReduce model.

To mine frequent patterns from Big probabilistic datasets of uncertain data, Leung and Hayduk [13] proposed the MR-growth algorithm. The algorithm uses MapReduce by applying two sets of the “map” and “reduce” functions—in a pattern growth environment. Specifically, the master node reads and divides a probabilistic dataset D of uncertain data into partitions, and then assigns them to different worker nodes. During the first set of map phase each worker node emits the item(x) and the probability associated with that item and transaction in which the item is present (P(x, t)). These <x, P(x, t)> pairs in the list (i.e., intermediate results) are shuffled and sorted (e.g., grouped by x). Each worker node then executes the “reduce” function, which (i) “reduces”—by summing—all the P(x, t) values for each item x so as to compute its expected support expSup(x, D) and (ii) outputs <x, expSup(x, D)> (representing a frequent singleton {x} and its expected support) if expSup(x, D) ≥ minsup.

Afterwards, MR-growth rereads the datasets to form a {x}-projected database (i.e., a collection of transactions containing x) for each item x in the list produced by the first reduce function (i.e., for each frequent one itemset {x}). The worker node corresponding to each projected database then (i) builds appropriate local UF-trees (based on the projected database assigned to the node) to mine frequent k-itemsets (for k ≥ 2) and (ii) outputs <X, expSup(X, D)> (which represents a frequent k-itemset X and its expected support) if expSup(X, D) ≥ minsup. By
using the two sets of “map” and “reduce” functions, the MRgrowth algorithm finds
- all frequent one-itemsets with their expected support
- then builds appropriate projected databases using FP-trees, CUF-trees or PUF-trees to find all frequent k-itemsets (for k ≥ 2) with their expected support.

V. CONCLUSION

Many candidate sets will be generated and tested for their frequency in U-Apriori algorithm. This generate-and-test procedure is completely avoided in tree based frequent pattern mining algorithms. Larger tree sizes in UF-tree are reduced in subsequent algorithms using Caps (Limits). In PUF-growth prefixed item caps are used to reduce false positives in comparison to usage of transaction caps in CUF-growth. tubeS-growth and tubeP-growth ensure non-generation of high cardinality candidates and thereby improve run-time performance. The above mentioned algorithms generates all the possible frequent patterns but if the user is interested in only some part of the frequent patterns then constrained frequent pattern mining is used. U-FPS algorithm enables the user to push the constraints into the mining process. MR-growth algorithm is used to mine the frequent patterns from Big Data for analytics. In the context of Big data, uncertain frequent pattern search space can be greatly reduced using constrained mining.

REFERENCES

