
International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 323

Overview of Important Algorithms to mine
Frequent Patterns from Uncertain Data

Vani Bhogadhi1, Dr. M. B. Chandak2

1Student (M.Tech), Department of Computer Science and Engineering, RCOEM, Nagpur, Maharashtra, India
2 Head, Department of Computer Science and Engineering, RCOEM, Nagpur, Maharashtra, India

Abstract— In this paper, we focus on some of the
important algorithms used in mining frequent patterns
from uncertain data. The algorithms discussed are UF-
growth, CUF-growth, PUF-growth, tubeS-growth, tubeP-
growth. Uncertainty in data is caused by factors like data
randomness, data incompleteness, etc. In some
circumstances, users are interested in only some of the
frequent patterns instead of all. The user can express his
interest in terms of constraints and push them into the
mining process as a result, the search space is reduced
which is termed as constrained mining. Finally, big data
has brought tools for the problem of frequent pattern
mining of uncertain data.
Keywords— big data, constrained mining, data
randomness, Frequent pattern mining, uncertain data.

I. INTRODUCTION
1.1 Frequent Pattern Mining
Finding frequent patterns plays an essential role in
association rule mining, classification, clustering, and
other data mining tasks. Frequent pattern mining [17, 19]
was first proposed by Agrawal et al.[17] for market
basket analysis in the form of association rule mining. It
analyses customer buying habits by finding associations
between the different items that customers place in their
“shopping baskets”. Let I = {i1, i2, ... , in} be a set of all
items. A k-itemset α, which consists of k items from I, is
frequent if α occurs in a transaction database D no lower
than θ|D| times, where θ is a user-specified minimum
support threshold (called min_sup), and |D| is the total
number of transactions in D.
1.2 Uncertainty in Data
How much faith can or should be put in the Social media
data like Tweets, Facebook posts, etc. Correlation of the
data with persons, items, locations, associations, etc can
somewhat reduce uncertainty but cannot completely
eliminate it. Sure, this data can be used as a count toward
sentiment, but cannot be used as a count for total sales
and report on that. Due to measurement errors, but also
sensor malfunctions, approximation errors, sampling
errors, etc sensor data is highly uncertain as well. Due to
the sheer velocity of some data (like stock trades, or

machine/sensor generated events), time cannot be spent to
“cleanse” it and get rid of the uncertainty, so data must be
processed as is i.e. understanding the uncertainty in the
data. Nowadays, as multi-structured data is being brought
together, it is nearly impossible to determine the origin of
the data and correlate fields.
Data can be obsolete (e.g., when a dynamic database is
not up-to-date), data may originate from unreliable
sources (such as crowd-sourcing), the volume of the
dataset may be too small to answer questions reliably, or
Data may be blurred to prevent privacy threats and to
protect user anonymity. The challenge in handling
uncertain data is to obtain reliable results despite the
presence of uncertainty.
1.3 Probabilistic Model for Uncertain Data
Users may not be certain about the presence or absence of
an item x in a transaction ti in a probabilistic dataset D of
uncertain data [20]. Users may suspect, but cannot
guarantee, that x is present in ti. The uncertainty of such
suspicion can be expressed in terms of existential
probability P(x, ti), which indicates the likelihood of x
being present in ti in D. The existential probability P(x, ti)
ranges from a positive value close to 0 (indicating that x
has an insignificantly low chance to be present in D) to a
value of 1 (indicating that x is definitely present). With
this notion, each item in any transaction in traditional
databases of precise data (e.g., shopper market basket
data) can be viewed as an item with a 100 % likelihood of
being present in such a transaction.
1.4 Objectives of the Paper
U-Apriori, UF-growth, CUF-growth, PUF-growth, tubeS
and tubeP algorithms which find frequent patterns from
probabilistic datasets of uncertain data are studied for
their advantages and drawbacks. Constrained frequent
pattern mining is briefly discussed. The idea of usage of
MapReduce frame work for extending the above
mentioned uncertain frequent pattern algorithms in Big
Data area are deliberated.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 324

II. FREQUENT PATTERN MINING OF
UNCERTAIN DATA

Uncertain frequent pattern mining from a probabilistic
dataset D of uncertain data is to find every pattern X
having expSup(X,D) ≥ minsup. Such a pattern X is called
an expected support-based frequent pattern or just
frequent pattern
Finding frequent patterns from uncertain data started with
candidate generate-and-test paradigm and now replaced
with tree-based mining due to its advantages.
2.1 Uncertain Frequent Pattern Mining using
candidate generate-and-test paradigm (U-Apriori)
Chui et al. proposed U-Apriori algorithm [1], a
modification of Apriori algorithm [17] that mines
frequent patterns from uncertain data. U-Apriori
algorithm uses candidate generate-and-test paradigm in a
breadth first bottom-up fashion.
U-Apriori Algorithm:
Step 1: computes the expected support of all domain
items. Those items with expected supports ≥ minsup
become every frequent pattern consisting of one item.
Step 2: the algorithm repeatedly applies the candidate
generate-and-test process to generate candidate (k+1) -
itemsets from frequent k-itemsets and test if they are
frequent (k+1)-itemsets.
The algorithm’s efficiency can be improved by including
the LGS-trimming strategy (local trimming, global
pruning, and single-pass patch up) [1]. This strategy trims
away every item with an existential probability below the
user-specified trimming threshold (which is local to each
item) from the original probabilistic dataset D of
uncertain data and then mines frequent patterns from the
resulting trimmed dataset DTrim. On the one hand, if a
pattern X is frequent in DTrim, then X must be frequent in
D.
U-Apriori algorithm suffers from the following problems:

• there is an overhead in creating DTrim

• only a subset of all the frequent

• patterns can be mined from DTrim and there is
overhead to patch up

• the efficiency of the algorithm is sensitive to the
percentage of items having low existential
probabilities

• it is not easy to find an appropriate value for the
user-specified trimming threshold

• there are multiple scans involved
2.2 Uncertain Frequent Pattern Mining using Tree
Structures
The candidate generate-and-test based mining algorithms
(e.g., the U-Apriori algorithm) use a levelwise bottom-up
breadth-first mining technique to find frequent patterns
from uncertain data. As an alternative to Apriori-based,

tree-based mining avoids generating many candidates.
Tree-based algorithms use a depth-first divide-and-
conquer approach to mine frequent patterns from a tree
structure that captures the contents of the probabilistic
dataset.
The UF-growth is a tree based algorithm for mining
uncertain data to find the frequent itemsets proposed by
Leung et.al. [10]. The two main steps in this algorithm are

• the construction of UF-trees

• mining of frequent patterns from UF-trees.
While construction of the UF-tree each node captures an
item, its expected support and the number of occurrence
of such expected support for such an item. The UF-
growth algorithm constructs the UF-tree as follows: It
scans the database once and accumulates the expected
support of each item. Hence, it’s all frequent items (i.e.,
items having expected support ≥ minsup). It sorts these
frequent items in descending order of accumulated
expected support. The algorithm then scans the database
the second time and inserts each transaction into the UF-
tree.
2.3 CUF Tree Structure
Leung and Tanbeer[2] proposed the capped uncertain
frequent pattern tree (CUF-tree) structure, which uses the
tree structure to represent the items of the transaction and
also extracts the frequent patterns from the tree. Here the
CUF-tree is constructed by considering an upper bound of
existential probability for each transaction which is called
as the cap of the transaction existential probability.
 Definition: The transaction cap of a transaction ti,
denoted as Pcap(ti), is defined as the product of the two
highest existential probability values of items within ti.
Let h=| ti | represent the length of ti, M1 = maxqє[1,h]P(xq, ti)
and M2 = maxrє[1,h],r≠q P(xr, ti).

 M1 × M2 if h>1
 PCap(ti) = P(x1, ti) if h=1 (1)
 Where the PCap(ti) provides users with an upper bound
of existential probability values of all possible k-itemsets
(where k > 1) in each transaction.
 The cap of expected support of an itemset X, denoted
as expSupCap(X), is defined as the sum of all transaction
caps of ti in which X occurs, expSupCap(X)=∑i=1

n
PCap(ti)│X⊆ti), n=|DB|.
TABLE I. A TRANSACTION DATABASE USING

MINSUP=1.0

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 325

CUF Tree Construction Algorithm:

The CUF-tree is constructed in two database scans.

• In the first scan of the database, the expected
support of each domain item is calculated,
thereby removing infrequent items, and then all
frequent items are sorted in descending order of
their total expected support.

• In the second scan of the database, CUF-tree is
constructed and the transaction caps are
calculated at the same time.

• Items of the transaction are inserted into the
CUF-tree according to the sorted list order, and
the transaction cap value is added to each node
according to the sorted list order.

Consider Table 1 with four transactions, and let the
minsup be 1.0. The above algorithm computes the
expected support of each item as {a: 2.3, b:1.4,
c:2.2,d:0.9, e:1.8}, removes infrequent items from the list,
and arranges the remaining items in sorted order results in
item-list {a:2.3, c:2.2, e:1.8, b:1.4}. Then in the second
scan of the database, transaction cap of each transaction
are calculated and CUF Tree is also constructed. Only
frequent items are considered while calculating the
transaction cap which results in the tighter upper bound
for the construction of the CUF Tree and eventually
generates less number of false positives. The initial and
the final item caps and their corresponding CUF-trees
after removing the infrequent items are shown in the
Figure 1.
The CUF-growth algorithm is responsible for
constructing the projected databases and mining frequent
patterns from uncertain data. It scans the database three
times to extract the frequent patterns. The algorithm
calculates the transaction caps in its first scan and builds
the CUF-tree during its second scan. The tree stores the

item and the transaction caps, which act as the upper
bounds to the expected support of frequent k-itemsets (for
k≥2). The last step in the algorithm during the second
scan is to discover all possible frequent patterns by
extracting suitable tree paths from subsequent projected
databases. There may be some infrequent patterns (false
positives) so the algorithm again scans the dataset for the
third time to check whether all the frequent patterns
retrieved during the second scan are truly frequent
patterns or not and trims the false positives.

Fig.1: CUF-Tree

2.4 PUF Tree Structure
Leung and Tanbeer[3] proposed the PUF-tree which is
constructed by considering an upper bound of existential
probability value for each item when generating a k-
itemset (where k > 1). We call the upper bound of an item
xr in a transaction ti the (prefixed) item cap of xr in ti, as
defined below.
Definition: The (prefixed) item cap ICap(xr, ti) of an item xr
in a transaction ti = {x1, . . . , xr, . . . , xh}, where 1 ≤ r ≤ h,
is defined as the product of P(xr, ti) and the highest
existential probability value M of items from x1 to xr−1 in
ti (i.e., in the proper prefix of xr in ti):
 P(xr, ti)×M if h>1, where M= max1≤q≤r- 1
P(xq, ti)
ICap(xr,ti)= P(x1, ti) if h=1 (2)
 The cap of expected support expSupCap(X) of a pattern
X= {x 1, . . . , xm} (where m > 1) is defined as the sum
(over all n transactions in a DB) of all item caps of xm in
all the transactions that contain X: expSupCap(X)=
∑i=1

n{I Cap(xm ,ti)|X⊆ti)
TABLE II. A TRANSACTION DATABASE USING

MINSUP=0.5

TID Contents
Contents(after 1st

scan)
PCap

t1
{a:0.5, b:0.8, c:0.5,

e:0.6}
{a:0.5, b:0.8, c:0.5,

e:0.6}
0.48

t2
{a:0.7, b:0.6, c:0.6,

d:0.7}
{a:0.7, b:0.6, c:0.6} 0.42

t3 {a:0.3, c:0.8, e:0.5} {a:0.3, c:0.8, e:0.5} 0.40

t4
{a:0.8, c:0.3, d:0.2,

e:0.7}
{a:0.8, c:0.3, e:0.7} 0.56

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 326

PUF Tree is constructed as shown below:
In the first scan of the database, it finds distinct frequent
items in DB and constructs an I-list to store only frequent
items in some consistent order (e.g. canonical order) to
facilitate tree construction.

• The PUF-tree is constructed with the second
database scan in a fashion similar to that of the
FP-tree [4].

• Before inserting an item into the tree, its item
cap is calculated and then inserted into the tree
according to the I-list order.

If that node already exists in the path, we update its item
cap by adding the computed item cap to the existing item
cap. Otherwise, we create a new node with this item cap
value.
PUF trees which includes all the items of all transactions
and after removing infrequent items are shown in the
following Figure 2.

Fig.2. PUF-Tree

The PUF-growth algorithm takes three scans of the
probabilistic dataset of uncertain data to mine frequent
patterns.

• In the first scan, PUF-growth computes the
prefixed item caps.

• During the second scan, PUF growth builds a
PUF-tree and stores the item and its
corresponding prefixed item cap.

• By the end of the second scan PUF-growth finds
all the frequent patterns by forming the PUF-
trees for subsequent projected databases.

• Finally in the third scan it verifies each frequent
pattern is truly frequent by pruning the false
positives.

CUF and PUF-growth algorithms construct tree structures
with the help of item caps where the size of the trees are
very small when compared with the UF-tree. PUF-growth
is faster than CUF-growth. We can obtain a compact tree
structure by further reducing the upper bound on expected
support results in a tree structures, called tube-trees
namely tubeS and tubeP-trees [23].
2.5 TubeS Tree Structure
Leung and Tanbeer [23] proposed the TubeS-tree which
is constructed by considering the second highest
existential probability value in the proper prefix for each
transaction generating a k-itemset (where k > 1).
Each path in the tree represents a transaction and in turn
each node in the tree maintains (i) an item xr in in a
transaction ti = {x1, . . . , xr, . . . , xh}, (ii) its item cap
ICap(xr,ti), and (iii) the second highest probability M1(xr,ti)
in the proper prefix {x1, . . . , xr-1}⊆ ti. The tightened
upper bound to expected support on a second highest
existential probability (tubeS) for X={x1. . . xr, . . . , xh}⊆
ti is calculated as :
 ICap (X, ti) if k ≤ 2
tubeS (X, ti)= ICap (X, ti) × πi=1

k-2 M1(xr, ti) if k ≥ 3 (3)

 where M1(xr,ti) is the second highest existential
probability value among all r-1 items in the proper prefix
{x 1, . . . , xr-1}⊆ ti and ICap(xr,ti) value is taken from
Equation(2).

2.6 TubeP Tree Structure
Each node in the tree maintains (i) an item xr in in a
transaction ti = {x1, . . . , xr, . . . , xh}, (ii) its item cap
ICap(xr,ti), and (iii) its existential probability P(xr, ti). With
this information, another tightened upper bound to
expected support based on existential probabilities of
prefix item (tubeP) for X={x1. . . xr, . . . , xh}⊆ ti is
calculated as
 ICap (X, ti) if k ≤ 2
tubeP (X, ti)= ICap (X, ti) × πi=1

k-2 P(xr, ti) if k ≥ 3 (4)

where P(xr, ti) is the existential probability of xr € ti
The second highest existential probability value M1(xr,ti)
and the P(xr, ti) value that are used in both tubeS and
tubeP-growth guarantees not to generate high cardinality
candidates due to their expected support caps being closer
to the actual expected support.

TID Transactions
Sorted transactions with
infrequent items
removed

t1
{a:0.3, b:0.1, c:0.9,
f:0.6}

{a:0.3, c:0.9, f:0.6}

t2 {a:0.6, c:0.8, e:0.4} {a:0.6, c:0.8, e:0.4}

t3
{a:0.4, d:0.4, e:0.5,
f:0.4}

{a:0.4, d:0.4, f:0.4,
e:0.5}

t4
{a:0.8, b:0.3, d:0.1,
e:0.5}

{a:0.8, e:0.5, d:0.1}

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 327

III. CONSTRAINED UNCERTAIN FREQUENT
PATTERN MINING

The CUF-growth and PUF-growth algorithms are useful
in finding all the frequent patterns from probabilistic
datasets of uncertain data in many situations. There are
many real-life situations in which the user is interested in
only some frequent patterns. Finding all frequent patterns
would then be redundant and waste lots of computation.
This leads to constrained mining [5, 6, 7, 8, 9] that aims
in finding only those frequent patterns that are interesting
to the user. In response, Leung et al. [10, 11] extended the
UF-growth algorithm to mine probabilistic datasets of
uncertain data for frequent patterns that satisfy user-
specified constraints resulting algorithm, called U-FPS
[10] which effectively find constrained frequent patterns
from uncertain data.
Users typically employ their knowledge of the application
or data to specify rule constraints for the mining task. In
general, an efficient frequent pattern mining processor
can prune its search space during mining in two major
ways: pruning pattern search space and pruning data
search space. Based on how a constraint may interact with
the pattern mining process, there are five categories of
pattern mining constraints antimonotonic, monotonic,
succinct, convertible and inconvertible.
Antimonotonic: If an itemset does not satisfy the rule
constraint, none of its supersets can satisfy the constraint.
Monotonic: When an item set S satisfies the constraint, so
does any of its superset.
Succinct Constraints. This constraint enumerates all and
only those sets that are guaranteed to satisfy the
constraint.
Once the UF-tree is constructed, the U-FPS(SAM)[10]
algorithm recursively mines frequent patterns that satisfy
SAM constraints from this tree in a similar fashion as in
the FP-growth[4] algorithm. The U-FPS effectively mines
from uncertain data all and only those frequent patterns
that satisfy the user-specified SAM constraint.

IV. UNCERTAIN FREQUENT PATTERN
MINING FROM BIG DATA

"Big Data"[12] is a term used to describe a massive
volume of diverse data, both structured and unstructured,
that is so large and fast-moving that it’s difficult or
impossible to process using traditional databases and
software technology. In most enterprise scenarios, the
data is too enormous, streaming by too quickly at
unpredictable and variable speeds, and exceeds current
processing capacity.
In 2012, Gartner revised and gave a more detailed
definition [21, 22] as: Big Data are high-volume, high-
velocity, and/or high-variety information assets that
require new forms of processing to enable enhanced

decision making, insight discovery and process
optimization”. More generally, a data set can be called
Big Data if it is formidable to perform capture, curation,
analysis and visualization on it at the current technologies
MapReduce[14] is a software framework which facilitates
the user to write applications to process huge amounts of
data, in parallel, on large clusters of commodity hardware
in a reliable manner. MapReduce is a processing
technique and a program model for distributed computing
based on java. The MapReduce algorithm contains two
important tasks, namely Map and Reduce. Map takes a set
of data and converts it into another set of data, where
individual elements are broken down into tuples
(key/value pairs). Secondly, reduce task, which takes the
output from a map as an input and combines those data
tuples into a smaller set of tuples. The major advantage of
MapReduce is that it is easy to scale data processing over
multiple computing nodes. Once we write an application
in the MapReduce form, scaling the application to run
over hundreds, thousands, or even tens of thousands of
machines in a cluster is merely a configuration change.
This simple scalability is what has attracted many
programmers to use the MapReduce model.
To mine frequent patterns from Big probabilistic datasets
of uncertain data, Leung and Hayduk [13] proposed the
MR-growth algorithm. The algorithm uses MapReduce
by applying two sets of the “map” and “reduce”
functions—in a pattern growth environment. Specifically,
the master node reads and divides a probabilistic dataset
D of uncertain data into partitions, and then assigns them
to different worker nodes. During the first set of map
phase each worker node emits the item(x) and the
probability associated with that item and transaction in
which the item is present (P(x, tj). These <x, P(x, tj))>
pairs in the list (i.e., intermediate results) are shuffled and
sorted (e.g., grouped by x). Each worker node then
executes the “reduce” function, which (i) “reduces”—by
summing—all the P(x, tj) values for each item x so as to
compute its expected support expSup({x},D) and (ii)
outputs <{x}, expSup({x},D)> (representing a frequent
singleton {x} and its expected support) if expSup({x},D)
≥ minsup.
 Afterwards, MR-growth rereads the datasets to form a
{x}-projected database (i.e., a collection of transactions
containing x) for each item x in the list produced by the
first reduce function (i.e., for each frequent one itemset
{x}). The worker node corresponding to each projected
database then (i) builds appropriate local UF-trees (based
on the projected database assigned to the node) to mine
frequent k-itemsets (for k ≥ 2) and (ii) outputs <X,
expSup(X,D)> (which represents a frequent k-itemsetX
and its expected support) if expSup(X,D) ≥ minsup. By

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 328

using the two sets of “map” and “reduce” functions, the
MRgrowth algorithm finds

• all frequent one-itemsets with their expected support

• then builds appropriate projected databases using FP-
trees, CUF-trees or PUF-trees to find all frequent k-
itemsets (for k ≥ 2) with their expected support.

V. CONCLUSION

Many candidate sets will be generated and tested for their
frequency in U-Apriori algorithm. This generate-and-test
procedure is completely avoided in tree based frequent
pattern mining algorithms. Larger tree sizes in UF-tree are
reduced in subsequent algorithms using Caps (Limits). In
PUF-growth prefixed item caps are used to reduce false
positives in comparison to usage of transaction caps in
CUF-growth. tubeS-growth and tubeP-growth ensure
non-generation of high cardinality candidates and thereby
improve run-time performance. The above mentioned
algorithms generates all the possible frequent patterns but
if the user is interested in only some part of the frequent
patterns then constrained frequent pattern mining is used.
U-FPS algorithm enables the user to push the constraints
into the mining process. MR-growth algorithm is used to
mine the frequent patterns from Big Data for analytics. In
the context of Bigdata, Uncertain frequent pattern search
space can be greatly reduced using constrained mining.

REFERENCES
[1] Chui, C.-K., Kao, B., & Hung, E. 2007, “Mining

frequent itemsets from uncertain data,” in
Proceedings of the PAKDD 2007, pp 47–58.
Springer.

[2] Leung, C.K.-S., & Tanbeer, S.K. 2012, “Fast tree-
based mining of frequent itemsets from uncertain
data”, in Proceedings of the DASFAA 2012, Part I,
pages 272–287. Springer.

[3] Leung, C.K.-S., & Tanbeer, S.K. 2013, “PUF-tree: a
compact tree structure for frequent pattern mining of
uncertain data,” in Proceedings of the PAKDD
2013, Part I, pages 13–25. Springer.

[4] Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N,
“Frequent subtree mining- an overview,” in
Proceedings of the PAKDD 2013. 66(1-2), 161-198
(2004)

[5] Cuzzocrea, A., Leung, C.K.-S., & MacKinnon, R.K.
2014, Mining constrained frequent itemsets from
distributed uncertain data”, in Future Generation
Computer Systems. Elsevier.

[6] Lakshmanan, L.V.S., Leung, C.K.-S., & Ng, R.T.
2003, “Efficient dynamic mining of constrained
frequent sets,” in ACM Transactions on Database
Systems (TODS), 28(4), pp 337–389.

[7] Leung, C.K.-S. 2009, “Frequent itemset mining with
constraints,” in Encyclopedia of Database Systems,
pp 1179–1183. Springer.

[8] Leung, C.K.-S., & Brajczuk, D.A. 2009, “Mining
uncertain data for constrained frequent sets,” in
Proceedings of the IDEAS 2009, pp 109–120. ACM.

[9] Leung, C.K.-S., & Brajczuk, D.A. 2010, “uCFS2: an
enhanced system that mines uncertain data for
constrained frequent sets,” in Proceedings of the
IDEAS 2010, pp 32–37. ACM.

[10] Leung, C.K.-S., & Brajczuk, D.A. 2009, “ Efficient
algorithms for the mining of constrained frequent
patterns from uncertain data,” in ACM SIGKDD
Explorations, 11(2), pp 123–130.

[11] Leung, C.K.-S., Hao, B., & Brajczuk, D.A. 2010,
“Mining uncertain data for frequent itemsets that
satisfy aggregate constraints,” in Proceedings of the
ACM SAC 2010, pp 1034–1038

[12] Madden, S. 2012, “From databases to big data,” in
IEEE Internet Computing, 16(3), pp 4–6.

[13] Leung, C.K.-S.,&Hayduk,Y. 2013, “Mining
frequent patterns from uncertain data with
MapReduce for Big Data analytics,” in Proceedings
of the DASFAA 2013, Part I, pp 440–455. Springer.

[14] http://www.tutorialspoint.com/hadoop/hadoop_mapr
educe.htm

[15] Carson Kai-Sang Leung, Mark Anthony F. Mateo,
and Dale A.Brajczuk, “A Tree-Based Approach for
Frequent Pattern Mining from uncertain Data”, T.
Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp.
653–661, 2008

[16] Mohammad Mudassar Khan, Anand Rajavat , “An
Efficient Algorithm for Extracting Frequent Item
Sets from a Data Set”. In Proceedings of the
International Journal of Advanced Research in
Computer Science and Software Engineering, pp
1373-1375.

[17] R. Agrawal and R. Srikant,”Fast Algorithms for
Mining Association Rules in Large Databases,” in
Journal of Computer Science and Technology, vol.
15, pp. 487-499,1994

[18] Lukoianova, T., & Rubin, V. (2014), “Veracity
Roadmap: Is Big Data Objective, Truthful and
Credible?,” in Advances In Classification Research
Online, 24(1). doi:10.7152/acro.v24i1.14671

[19] Agrawal, R., Imielinski, T., & Swami, A, “Mining
association rules between sets of items in large
databases,” in Proceedings of the ACM SIGMOD
1993, pp 207–216.

[20] Green, T., & Tannen,V. 2006, “Models for
incomplete and probabilistic information,” in
Bulletin of the Technical Committee on Data

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 329

Engineering, 29(1), pp 17–24. IEEE Computer
Society.

[21] http://www.gartner.com/resId=2057415
[22] L.W.M. Wienhofen, B.M. Mathisen, D. Roman,

“Empirical Big Data Research: A Systematic
Literature Mapping,”
http://arxiv.org/pdf/1509.03045.pdf.

[23] Carson Kai-Sang Leung, Richard Kyle MacKinnon,
Syed K. Tanbeer, “Fast Algorithms for Frequent
Itemset Mining from Uncertain Data”, in Data
Mining (ICDM), 2014 IEEE International
Conference, pp 893 – 898.

