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Abstract— In this paper, we focus on some of the
important algorithms used in mining frequent patterns
from uncertain data. The algorithms discussed are UF-
growth, CUF-growth, PUF-growth, tubeS-growth, tubeP-
growth. Uncertainty in data is caused by factors like data
randomness, data incompleteness, etc. In some
circumstances, users are interested in only some of the
frequent patterns instead of all. The user can express his
interest in terms of constraints and push them into the
mining process as a result, the search space is reduced
which is termed as constrained mining. Finally, big data
has brought tools for the problem of frequent pattern
mining of uncertain data.
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randomness, Freguent pattern mining, uncertain data.

I.  INTRODUCTION
1.1 Frequent Pattern Mining
Finding frequent patterns plays an essential rale i
association rule mining, classification, clusterirand
other data mining tasks. Frequent pattern mining [B]
was first proposed by Agrawal et al.[17] for market
basket analysis in the form of association ruleingnlt
analyses customer buying habits by finding associst
between the different items that customers placteir
“shopping baskets”. Let | = {i1, i2, ... , in} beset of all
items. A k-itemsetr, which consists of k items from 1, is
frequent ifa occurs in a transaction database D no lower
than 6|D| times, wherdd is a user-specified minimum
support threshold (called min_sup), and |D| is ttital
number of transactions in D.
1.2 Uncertainty in Data
How much faith can or should be put in the Sociatia
data like Tweets, Facebook posts, etc. Correlatiothe
data with persons, items, locations, associatiettscan
somewhat reduce uncertainty but cannot completely
eliminate it. Sure, this data can be used as atd¢oward
sentiment, but cannot be used as a count for satigls
and report on that. Due to measurement errorsalsat
sensor malfunctions, approximation errors, sampling
errors, etc sensor data is highly uncertain as. \ile to
the sheer velocity of some data (like stock tradms,
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machine/sensor generated events), time cannotdr &p
“cleanse” it and get rid of the uncertainty, soadatust be
processed as is i.e. understanding the uncertaintize
data. Nowadays, as multi-structured data is beiogdht
together, it is nearly impossible to determine ahigin of

the data and correlate fields.

Data can be obsolete (e.g., when a dynamic datdbase
not up-to-date), data may originate from unreliable
sources (such as crowd-sourcing), the volume of the
dataset may be too small to answer questions hgliab
Data may be blurred to prevent privacy threats &nd
protect user anonymity. The challenge in handling
uncertain data is to obtain reliable results despite
presence of uncertainty.

1.3 Probabilistic Model for Uncertain Data

Users may not be certain about the presence onedsd

an item x in a transactionih a probabilistic dataset D of
uncertain data [20]. Users may suspect, but cannot
guarantee, that x is present inTthe uncertainty of such
suspicion can be expressed in terms of existential
probability P(x, §, which indicates the likelihood of x
being present in ti in D. The existential probapil(x, t)
ranges from a positive value close to 0 (indicatimat x

has an insignificantly low chance to be preser)rto a
value of 1 (indicating that x is definitely presentVith

this notion, each item in any transaction in tiadl
databases of precise data (e.g., shopper marké&etbas
data) can be viewed as an item with a 100 % likel¢hof
being present in such a transaction.

1.4 Obijectives of the Paper

U-Apriori, UF-growth, CUF-growth, PUF-growth, tubeS
and tubeP algorithms which find frequent pattdrosn
probabilistic datasets of uncertain data are studar
their advantages and drawbacks. Constrained fréquen
pattern mining is briefly discussed. The idea cdges of
MapReduce frame work for extending the above
mentioned uncertain frequent pattern algorithmsBig
Data area are deliberated.
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Il. FREQUENT PATTERN MINING OF
UNCERTAIN DATA
Uncertain frequent pattern mining from a probabdis
dataset D of uncertain data is to find every patt&r
having expSup(X,D¥ minsup. Such a pattern X is called
an expected support-based frequent pattern or just
frequent pattern
Finding frequent patterns from uncertain data sthvtith
candidate generate-and-test paradigm and now eplac
with tree-based mining due to its advantages.
2.1 Uncertain Frequent Pattern Mining using
candidate generate-and-test paradigm (U-Apriori)
Chui et al. proposed U-Apriori algorithm [1], a
modification of Apriori algorithm [17] that mines
frequent patterns from uncertain data. U-Apriori
algorithm uses candidate generate-and-test paraitigan
breadth first bottom-up fashion.
U-Apriori Algorithm:
Step 1. computes the expected support of all domain
items. Those items with expected supportsminsup
become every frequent pattern consisting of omma.ite
Step 2: the algorithm repeatedly applies the cadid
generate-and-test process to generate candidaflg (k+
itemsets from frequent k-itemsets and test if tlaeg
frequent (k+1)-itemsets.
The algorithm’s efficiency can be improved by irdihg
the LGS-trimming strategy (local trimming, global
pruning, and single-pass patch up) [1]. This stateims
away every item with an existential probability do&lthe
user-specified trimming threshold (which is localeach
item) from the original probabilistic dataset D of
uncertain data and then mines frequent patterma fre
resulting trimmed dataset{f),. On the one hand, if a
pattern X is frequent in fa,, then X must be frequent in
D.
U-Apriori algorithm suffers from the following prégms:
« there is an overhead in creating;R)
« only a subset of all the frequent
e patterns can be mined fromy]Q and there is
overhead to patch up
« the efficiency of the algorithm is sensitive t@th
percentage of items having low existential
probabilities
e itis not easy to find an appropriate value for the
user-specified trimming threshold
« there are multiple scans involved
2.2 Uncertain Frequent Pattern Mining using Tree
Structures
The candidate generate-and-test based mining digusi
(e.g., the U-Apriori algorithm) use a levelwise toot-up
breadth-first mining technique to find frequent tpats
from uncertain data. As an alternative to Apricasbd,
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tree-based mining avoids generating many candidates
Tree-based algorithms use a depth-first divide-and-
conquer approach to mine frequent patterns fromea t
structure that captures the contents of the prdibadbi
dataset.
The UF-growth is a tree based algorithm for mining
uncertain data to find the frequent itemsets pregddsy
Leung et.al. [10]. The two main steps in this aiifyon are
» the construction of UF-trees
« mining of frequent patterns from UF-trees.

While construction of the UF-tree each node captare
item, its expected support and the number of oecee
of such expected support for such an item. The UF-
growth algorithm constructs the UF-tree as follows:
scans the database once and accumulates the aekpecte
support of each item. Hence, it's all frequent itefne.,
items having expected suppertminsup). It sorts these
frequent items in descending order of accumulated
expected support. The algorithm then scans thebdsga
the second time and inserts each transaction hetdJf-
tree.
2.3 CUF Tree Structure
Leung and Tanbeer[2] proposed the capped uncertain
frequent pattern tree (CUF-tree) structure, whisbsuthe
tree structure to represent the items of the titisaand
also extracts the frequent patterns from the tdege the
CUF-tree is constructed by considering an uppentaf
existential probability for each transaction whistctalled
as the cap of the transaction existential proksbili

Definition: The transaction cap of a trangactit,
denoted as Pt), is defined as the product of the two
highest existential probability values of items hait f.
Let h=| t | represent the length @f M, = max nP (%, t)
and My = MaXg g P(X, 1)

Nx M, if h>1
PeR(t) P(x, t) ifh=1 1)

Where the #t) provides users with an upper bound
of existential probability values of all possiblatémsets
(where k > 1) in each transaction.

The cap of expected support of an itemsetexoted
as expSup(X), is defined as the sum of all transaction
caps of t in which X occurs, expSIX)=Y-,"
PRt | X<t), n=|DB].

TABLE I. A TRANSACTION
MINSUP=1.0

DATABASE USING
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CUF Tree Construction Algorithm:

Contents(after 1st

TID Contents pear
scan)
{a:0.5, b:0.8, ¢c:0.5,| {a:0.5, b:0.8, c:0.5,
t e:0.6} e:0.6} 0.48
{a:0.7, b:0.6, c:0.6, ) . ) A
t2 40.7} {a:0.7, b:0.6, c:0.6} | 0.42

t3 | {a:0.3,¢:0.8,€e:0.5} {a:0.3,c:0.8,e:0.5} 0.40

{a:0.8, c:0.3, d:0.2,

t e:0.7}

{a:0.8, c:0.3, €:0.7} | 0.5€

The CUF-tree is constructed in two database scans.

* In the first scan of the database, the expected
support of each domain item is calculated,
thereby removing infrequent items, and then all
frequent items are sorted in descending order of
their total expected support.

* In the second scan of the database, CUF-tree is
constructed and the transaction caps are
calculated at the same time.

+ Items of the transaction are inserted into the
CUF-tree according to the sorted list order, and
the transaction cap value is added to each node
according to the sorted list order.

Consider Table 1 with four transactions, and le¢ th
minsup be 1.0. The above algorithm computes the
expected support of each item as {a: 2.3, bh:1.4,
c:2.2,d:0.9, e:1.8}, removes infrequent items frivn list,
and arranges the remaining items in sorted orcerlteein
item-list {a:2.3, c:2.2, e:1.8, b:1.4}. Then in tilsecond
scan of the database, transaction cap of eachattms
are calculated and CUF Tree is also constructedy On
frequent items are considered while calculating the
transaction cap which results in the tighter uppeund

for the construction of the CUF Tree and eventually
generates less number of false positives. Thealrtnd
the final item caps and their corresponding CUIedre
after removing the infrequent items are shown ie th
Figure 1.

The CUF-growth algorithm is responsible for
constructing the projected databases and minirguénet
patterns from uncertain data. It scans the datatfase
times to extract the frequent patterns. The algorit
calculates the transaction caps in its first saaoh lzuilds
the CUF-tree during its second scan. The tree stire
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item and the transaction caps, which act as thesrupp
bounds to the expected support of frequent k-itésn$er
k>2). The last step in the algorithm during the secon
scan is to discover all possible frequent pattelogs
extracting suitable tree paths from subsequentepteql
databases. There may be some infrequent patteaise (f
positives) so the algorithm again scans the dafas¢he
third time to check whether all the frequent patser
retrieved during the second scan are truly frequent
patterns or not and trims the false positives.

2:1.96

Ttem C
y 1;% \ It=m Cap ‘
- 158 186 2 L.86 c1.96
e 144 / \ £ 186 |
b 090 2 L4t
el 44 b:0.42 e:ld4

b:0.48
fa) Initial CUF Tres (8} CUF Tres with infrequent items

removed

Fig.1: CUF-Tree

2.4 PUF Tree Structure
Leung and Tanbeer[3] proposed the PUF-tree which is
constructed by considering an upper bound of axiste
probability value for each item when generating -a k
itemset (where k > 1). We call the upper boundroitem
X, in a transaction, the (prefixed) item cap of»n t, as
defined below.
Definition: The (prefixed) item cafFt(x;, t) of an item x
in a transaction t {X4, ..., % ..., %}, where 1<r<h,
is defined as the product of R(%) and the highest
existential probability value M of items from to x_; in
t; (i.e., in the proper prefix ofn t):

Px t)xM if h>1, where M= maxg- 1
P 1) {
1°Axt)= LP(x, t)  ifh=1 (2)

The cap of expected support exp3i(X) of a pattern

X={X1y, ..., %} (where m > 1) is defined as the sum
(over all n transactions in a DB) of all item cagsx, in
all the transactions that contain X: expSHX)=
Yiet"{l “Axm B) XS
TABLE II. A TRANSACTION
MINSUP=0.5

DATABASE USING
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Sorted transactions with

TID | Transactions infrequent items
removed
g | 80300.1,¢09 03¢0, f0.6)

f:0.6}

t2 {a:0.6, c:0.8, e:0.4} {a:0.6, c:0.8, e:0.4}

{a:0.4, d:0.4, e:0.5, {a:0.4, d:0.4, f:0.4,

3 :0.4} e:0.5}
{a:0.8, b:0.3, d:0.1, ] ) )
t4 e:0.5) {a:0.8, €:0.5, d:0.1}

PUF Tree is constructed as shown below:

In the first scan of the database, it finds digtiinequent
items in DB and constructs an I-list to store dingguent
items in some consistent order (e.g. canonical rpride
facilitate tree construction.

e The PUF-tree is constructed with the second
database scan in a fashion similar to that of the
FP-tree [4].

» Before inserting an item into the tree, its item
cap is calculated and then inserted into the tree
according to the I-list order.

If that node already exists in the path, we updatéem
cap by adding the computed item cap to the existag
cap. Otherwise, we create a new node with this itam
value.

PUF trees which includes all the items of all tert®ns
and after removing infrequent items are shown ia th
following Figure 2.

It=m Cap a2l
a 21
075 =073 =060 I;em Ealp =190
e 092 TN T = T
T 0.74 032 £0.54 £020 d:0.08 = ggz /F[Q e=0.60
d 0.8 ‘ T 073 w031 £054 £02
e032  £034 £020

d:022

(a) After inserting all transactions (B) After removing items with infrequent

axfensinng

Fig.2. PUF-Tree

The PUF-growth algorithm takes three scans of the
probabilistic dataset of uncertain data to minegdent
patterns.

* In the first scan, PUF-growth computes the
prefixed item caps.

» During the second scan, PUF growth builds a
PUF-tree and stores the item and its
corresponding prefixed item cap.

e By the end of the second scan PUF-growth finds
all the frequent patterns by forming the PUF-
trees for subsequent projected databases.
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e Finally in the third scan it verifies each frequent
pattern is truly frequent by pruning the false
positives.

CUF and PUF-growth algorithms construct tree stmest
with the help of item caps where the size of tleedrare
very small when compared with the UF-tree. PUF-ghow

is faster than CUF-growth. We can obtain a compraet
structure by further reducing the upper bound greeted
support results in a tree structures, called tobest
namely tubeS and tubeP-trees [23].

2.5 TubeS Tree Structure

Leung and Tanbeer [23] proposed the TubeS-treehwhic
is constructed by considering the second highest
existential probability value in the proper preffar each
transaction generating a k-itemset (where k > 1).

Each path in the tree represents a transactiorirahdn
each node in the tree maintains (i) an itemnxin a
transactiont= {Xy, . . ., % . . ., X} (ii) its item cap
1°®Ax,.t;), and (iii) the second highest probability;(M,t)

in the proper prefix {x . .., %S t. The tightened
upper bound to expected support on a second highest

existential probability (tubeS) for X={x. . %, ..., %} &
t; is calculated as :

PP (X, t) ifk<2
tubeS (X, )= 1% (X, t) x 1=t 2 My(x,, t) ifk>3 (3)

where M(x,t) is the second highest existential
probability value among all r-1 items in the propeefix
{X1, . .., xS t and F*¥x.t) value is taken from
Equation(2).

2.6 TubeP Tree Structure

Each node in the tree maintains (i) an itemirxin a
transactiont= {Xy, . . ., % . .., %} (i) its item cap
1°®x,,t), and (iii) its existential probability P{x;). With
this information, another tightened upper bound to
expected support based on existential probabilibés

prefix item (tubeP) for X={x. . . %, . . ., }}S t is
calculated as

PP (X, 1) ifk<2
tubeP (X, io{ 1€ (X, t) X e “2P(%, t)  ifk>3 (4)

where P(x t) is the existential probability of, xt;

The second highest existential probability valug>XVt;)
and the P(x t) value that are used in both tubeS and
tubeP-growth guarantees not to generate high alityin
candidates due to their expected support caps lotsgr

to the actual expected support.
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[l CONSTRAINED UNCERTAIN FREQUENT
PATTERN MINING
The CUF-growth and PUF-growth algorithms are useful
in finding all the frequent patterns from probadiil
datasets of uncertain data in many situations. & lage
many real-life situations in which the user is feted in
only some frequent patterns. Finding all frequeattgrns
would then be redundant and waste lots of computati
This leads to constrained mining [5, 6, 7, 8, Yttaims
in finding only those frequent patterns that ateriesting
to the user. In response, Leung et al. [10, 118reded the
UF-growth algorithm to mine probabilistic datasets
uncertain data for frequent patterns that satisferu
specified constraints resulting algorithm, calledFRS
[10] which effectively find constrained frequenttigans
from uncertain data.
Users typically employ their knowledge of the apation
or data to specify rule constraints for the miniagk. In
general, an efficient frequent pattern mining pesce
can prune its search space during mining in twoomaj
ways: pruning pattern search space and pruning data
search space. Based on how a constraint may ibt&ithc
the pattern mining process, there are five categooif
pattern mining constraints antimonotonic, monotpnic
succinct, convertible and inconvertible.
Antimonotonic: If an itemset does not satisfy théer
constraint, none of its supersets can satisfy timstcaint.
Monotonic: When an item set S satisfies the comgtrao
does any of its superset.
Succinct Constraints. This constraint enumeratearal
only those sets that are guaranteed to satisfy the
constraint.
Once the UF-tree is constructed, the U-FPS(SAM)[10]
algorithm recursively mines frequent patterns sattsfy
SAM constraints from this tree in a similar fashia® in
the FP-growth[4] algorithm. The U-FPS effectivelynes
from uncertain data all and only those frequentepas
that satisfy the user-specified SAM constraint.

V. UNCERTAIN FREQUENT PATTERN
MINING FROM BIG DATA

"Big Data"[12]is a term used to describe a massive
volume of diverse data, both structured and ungirad,
that is so large and fast-moving that it's difficudr
impossible to process using traditional databasa$ a
software technology. In most enterprise scenaribs,
data is too enormous, streaming by too quickly at
unpredictable and variable speeds, and exceedsnturr
processing capacity.
In 2012, Gartner revised and gave a more detailed
definition [21, 22] as: Big Data are high-volumeghy
velocity, and/or high-variety information assetsatth
require new forms of processing to enable enhanced
WWwWw.ijaems.com

decision making, insight discovery and process
optimization”. More generally, a data set can béeda
Big Data if it is formidable to perform capture,ration,
analysis and visualization on it at the currenhtexdogies
MapReduce[14] is a software framework which faaibts
the user to write applications to process huge atsoof
data, in parallel, on large clusters of commodaydware

in a reliable manner.MapReduce is a processing
technique and a program model for distributed camgu
based on java. The MapReduce algorithm contains two
important tasks, namely Map and Reduce. Map talses a
of data and converts it into another set of dathere
individual elements are broken down into tuples
(key/value pairs). Secondly, reduce task, whiclesathe
output from a map as an input and combines thote da
tuples into a smaller set of tuples. The major athge of
MapReduce is that it is easy to scale data praugssier
multiple computing nodes. Once we write an applcat

in the MapReduce form, scaling the application do r
over hundreds, thousands, or even tens of thousainds
machines in a cluster is merely a configurationngjea
This simple scalability is what has attracted many
programmers to use the MapReduce model.

To mine frequent patterns from Big probabilistidadets

of uncertain data, Leung and Hayduk [13] propoded t
MR-growth algorithm. The algorithm uses MapReduce
by applying two sets of the “map” and “reduce”
functions—in a pattern growth environment. Speaifig

the master node reads and divides a probabilistiaset

D of uncertain data into partitions, and then assithem

to different worker nodes. During the first set rofp
phase each worker node emits the item(x) and the
probability associated with that item and transactin
which the item is present (P(x).tThese <x, P(x;t)>
pairs in the list (i.e., intermediate results) shaffled and
sorted (e.g., grouped by x). Each worker node then
executes the “reduce” function, which (i) “reducedly
summing—all the P(x;)tvalues for each item x so as to
compute its expected support expSup({x},D) and (ii)
outputs <{x}, expSup({x},D)> (representing a freque
singleton {x} and its expected support) if expSug(D)

> minsup.

Afterwards, MR-growth rereads the dataset®tm a
{x}-projected database (i.e., a collection of tracisons
containing x) for each item x in the list produdey the
first reduce function (i.e., for each frequent dteenset
{x}). The worker node corresponding to each pragelct
database then (i) builds appropriate local UF-t(dased
on the projected database assigned to the nod&jn®e
frequent k-itemsets (for k= 2) and (ii) outputs <X,
expSup(X,D)> (which represents a frequent k-itediset
and its expected support) if expSup(X,D)minsup. By
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using the two sets of “map” and “reduce” functiotise

MRgrowth algorithm finds

« all frequent one-itemsets with their expected suppo

» then builds appropriate projected databases udhg F
trees, CUF-trees or PUF-trees to find all frequent
itemsets (for kx 2) with their expected support.

V. CONCLUSION
Many candidate sets will be generated and testethér
frequency in U-Apriori algorithm. This generate-aedt
procedure is completely avoided in tree based &etu
pattern mining algorithms. Larger tree sizes intide are
reduced in subsequent algorithms using Caps (Limits
PUF-growth prefixed item caps are used to redutse fa
positives in comparison to usage of transactiors dap
CUF-growth. tubeS-growth and tubeP-growth ensure
non-generation of high cardinality candidates dreteby
improve run-time performance. The above mentioned
algorithms generates all the possible frequenepagtbut
if the user is interested in only some part of fiteguent
patterns then constrained frequent pattern mirsngséed.
U-FPS algorithm enables the user to push the aintdr
into the mining process. MR-growth algorithm is dise
mine the frequent patterns from Big Data for anedytin
the context of Bigdata, Uncertain frequent pattsgarch
space can be greatly reduced using constrainedhgini
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