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Abstract—Mangroves are unique ecosystems that provide
valuable coastal area habitats, protection, andvemss.
Access to observing mangrove forests is typicaffjcdit

on the ground. Therefore, it is of interest to depeand
evaluate remote sensing methods that enable udtiino
accurate information on the structure of mangroweests
and to monitor their condition in time. The mainjestive

of this study was to develop a methodology for @seing
airborne lidar data for measuring height and crown
diameter for mangrove forests in the north-eastoastal
areas of Brazil. Specific objectives were to: (laate the
most appropriate lidar data processing approachchsias
area-based or individual tree methods, (2) invedtgthe
most appropriate parameters for lidar-derived data
products when estimating height and crown diametech
as the spatial resolution of canopy height modetsl a
ground elevation models; and (3) compare the accyraf
lidar estimates to field measurements of height amvn
diameter. The lidar dataset was acquired over mawgr
forest of the northeast of Brazil. The crown disgnatas
calculated as the average of two values measuraugaiwo
perpendicular directions from the location of edobe top
by fitting a fourth-degree polynomial on both pledi The
lidar-derived tree measurements were used withaggjon
models and cross-validation to estimate plot lefreld-
measured crown diameter. Root mean square ernoeali
regression and the Nash-Sutcliffe coefficient vadse used
to compare lidar height and field height. The meéfidar-
estimated tree height was 9,48m and the mean Idftfiee
height was 8.44m. The correlation between lidae theight
and field tree height was r= 0.60, E=-0.06 and RMSES.
The correlation between height and crown diametsded
to parameterized the individual tree identificatisoftware
obtained for 32 trees was r= 0.83 and determination
coefficient was 7= 0.69. The results of the current study
show that lidar data could be used to estimate Htedind
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average crown diameter of mangrove trees and toon®
estimates of other mangrove forest biophysical peaters
of interest by focusing at the individual tree levEéhe
research presented in this study contributes todbherall
knowledge of using lidar remote sensing to measume
monitor mangrove forests.

Keywords— Data acquisition, Brazl, Natural resources,
Radar altimetry, Variance analysis, Vegetation cover

I.  INTRODUCTION
Methods to estimate the amount of biomass of nhtura
forests in the world have been of great interest the
scientific community for many years. This interdsis
increased in the context of climate change. The
Intergovernmental Panel on Climate Change- IPCC has
showed in different reports an increase of,@@er the last
centuries and forecast an increase in,.dBOis known that
forests have an important function in £®equestration
from the atmosphere. The amount of £&&questered by
the forest depends on the amount of biomass thasti®
have. However, estimates of forest biomass in thedaare
scarce and often inaccurate. As such, methodstimate
the forest vertical structure and improve estimateforest
biophysical parameters are needed at various sdates
local to global, to better observe climate chanffeces and
design science-based mitigation efforts.
The difficulty of estimating forest vertical struceé occurs
because such information is obtained with tradélon
methods that are tedious, laborious and very expens
collect for large geographic areas. According tm&d et
al. (2008), remotely sensed images provide aniefficand
cost-effective way to gain insight into mangroveaar that
are often difficult to access and survey by fieléthods.
Both optical and active remote sensing techniquage h
been commonly used to study mangrove forests, ratidei
past years the combination of radar (RAdio Detectmd
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Ranging) and lidar (Light Detection And Ranging)sha
yielded interesting results that reach further than
determining mangrove cover alone. Generally, optica
remote sensing instruments such as Landsat, MO&1§,
SPOT observe the spectral properties of forestpimuide
limited information on the vertical structure. Toig day,
mangrove forests have also been studied usingipaaic
and interferometric radar and airborne and spaceedadar
systems. Several studies were carried out usingr rddta
for mangrove mapping and monitoring. In additidmee-
dimensional (3D) modeling of mangrove forests waslen
possible by the Shuttle Radar Topography MissidrT(®)
data. The 3D rendition was validated with airbomred
space-borne LIiDAR and field data to provide largaks
height and biomass estimates of mangrove forests.

More recently, with airborne lidar data becomingreno
affordable and available in coastal areas, the appity
has emerged to obtain structural information of gnane
forests with lidar data. Different studies have rbee
conducted to enable the use of lidar data for earti
structure characterization of temperate foresin{\@&san et
al., 2014), (zZhao et al., 2013), (Kaartinen et ap12),
(Popescu, 2007), (Popescu & Wynne, 2004), (Popescu
al., 2004) (Popescu et al., 2003), (Popescu €2@02). The
studies have shown that lidar remote sensing pesvid
highly accurate methods to obtain structural ddtéorest
with the potential to decrease field work and ilases
accuracy of estimates in areas with difficult fieddcess,
such as mangrove forests.

In addition, management of forests for multiple yysgich
as timber harvesting and protection of biologicakdsity,

is challenging. Effective management often requaiker
information about the presence and abundance ah@ms

— which is not available for many species — or the
development of indicators of habitat quality thatrelate
with species distributions. At the landscape scale
structure of forests can be quantified and usqatedict the
occurrence of some species. These structural w@ksb
include the height of the forest canopy, the amooint
canopy cover, and biomass. Field measurementsnofpga
height and canopy cover are conceptually simpleedDi
measurements of biomass are somewhat more prolitemat
because they require destructive sampling, althaugjhect
methods, e.g., allometric equations relating Disameit
Breast Height - DBH and/or height to biomass, sefffor
most applications (Hyde et al., 2005).

Lidar studies have been conducted in various fdrieshes
of the world to derive information on the verticdtucture
of forests (Agca et al., 2011), (Popescu et alQ320and
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also in mangrove forest (Fatoyinbo, 2013), (Wamhagi
al., 2013) (Simard et al., 2008), (Simard et ab0&), but
such studies are yet scarce in Brazil.

It is known that the mangrove ecosystem has veppitant
economic, environmental and climatic functions tbe
coastal region, where the mangrove forests corgitho
biodiversity and act as major biogeochemical libksveen
upland and coastal regions. Mangrove forests hagh h
biodiversity, with more than 1300 species of anapal
including many economically important fish and sipi
species. The mangroves have among the most preducti
ecosystems on Earth with 2.5gCnper day, with 25%
accumulating in mangrove sediments, 25% is recy&ego

is exported to oceans and about 10% of C to Global
Dissolved Organic Carbon. Mangrove forests protbet
shoreline against tropical storms, hurricanes afal surges
(Fatoyinbo, 2013).

Mangroves are among the most carbon-rich foresthen
tropics, containing on average 1,023Mg carbon etdre

in above and belowground C. Organic-rich soils eafrigm
0.5m to more that 3m in depth and account for 4%-38
carbon storage in these systems. The estimateaeooal
mangrove services value varies between $200k toksper
km? per year (UNEP report 2006). New initiatives s@sh
the Reduced Emissions from Desforestation and
Degradation (REDD+) and the United Nations BluebDar
Initiative are developing frameworks to compenssttges
for their C storage. But as a result of their lamatand
economic value, mangrove forests are among the most
rapidly changing ecosystems. The impacts on margrov
forest had been estimated to be very high, sinéé 85
50% of mangrove forests have disappeared in the §éas
years, although no systematic baseline data isladlei
(Donato et al.,, 2011). The greatest current threative
from human activities: aquaculture, freshwater diians,
overharvesting and urban and industrial developmEime
effects of climate change, such as sea level risg¢ a
increased extreme climatic events, may also inere¢he
vulnerability of mangrove ecosystems.

Mangroves are present on four continents and six
geographical regions of the planet, mostly occgrrin
Central America and the Caribbean, India, the lhdcx
Peninsula, Brazil and Australia (Barbosa, 2010)njtaves
occupy a significant fraction of the Brazilian chasbout
92% of the coast (+x 6800 km) line, extending frone t
northern end in Oyapock, Amapa°38'N) to its southern
limit at the Sonho beach in Santa Catarina’§2%)
(Barbosa, 2010), with its structural maximum depetent
near the equator.
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Coastal areas represent the portion of the plahetevmost
of the population lives on Earth. More than half tbé
world's population lives within 60 km of the coash
Brazil, 13 of the 17 coastal states capitals acatkd by the
sea. So, not coincidentally, the coastal areas uader
greater environmental stress and distributed amibreg
various ecosystems in these areas, mangroves hteees
most from a disorderly urban expansion.

Simard et al. (2008) shown that a recent Unitediddat
Environment Programme report (UNEP, 2006) estimates
that their economical value varies geographicaéyween
$200 k and $900 k per km2 per year. The primaryedsi of
mangrove conversion are related to human impacksnu
expansion, shrimp farming, water management prestic
charcoal cut as well as natural hazards such ageelaise,
hurricanes, severe storms and tsunamis. Among #jerm
impacts of mangrove loss are decline in biodiversit
degradation of clean water supplies, siltation @fat reefs
and acidification of coastal soils, erosion, lo§slworeline
stability, release of more carbon into the atmosphand
reduction (or disappearance) of important commefiga
stocks (Sanchez-Ramirez & Rueda, 1999; Rueda &defe
2001). It is estimated that the loss of originalngrave
forests is as high as 35% and may reach 60% by 2030
(Valiela et al., 2001; UNEP, 2006; Alongi, 2002)heke
are, however, gross estimates and do not rely oorat
landscape analyses, which can only be improvedugiro
remote sensing landscape scale assessment. Batharadi
optical remote sensing have been used extensigelgap
mangroves with varying degrees of success (e.gagoet
al., 2005; Laba et al.,, 1997, Ramsey et al.,, 1996;
Rasolofoharinoro et al., 1998; Wang et al., 2004]dHet
al., 2003; Simard et al., 2000; Mougin et al., 1999
Recently, structural (tree height) and functionzibass)
attributes of mangroves have been estimated usidgrr
interferometry (Simard et al., 2006). In Februafy2600,
Space Shuttle Endeavour collected nearly globatiame
of Earth's topography using radar interferometriR TSI,
Shuttle Radar Topography Mission). And because of
limited penetration of microwaves within vegetatidhe
SRTM topographic maps contain information related t
vegetation height (Kellndorfer et al., 2004). Mangr
forests are located within the intertidal zone. (e sea
level), which particularly simplifies the canopy idlet
estimation technique since the ground topograptasifiat
as the tidal range. SRTM data are distributed &ith0 m
spatial resolution around the Earth, reduced frdm t
original 30 m through averaging and subsampling.aln
previous paper, Simard et al. (2006) used an aisbbdar
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(i.e. light detection and ranging) to calibrate 3RT
elevation. Lidar measures the time of return dfjatlpulse
reflected off a target and thus measures the velati
distance. Recent results using space-borne lidawesth that
these data could also be used to estimate vegetaight

and correlate it with biomass (Lefsky et al., 20D5ake et

al., 2002a,b). GLAS (ICEsat Geoscience Laser Altime
System) is the first space-borne lidar instrumentgiobal
observations of Earth (Schutz et al., 2005) whiak heen
collecting data since early 2003 and is the benckifarth
Observing System mission for measuring ice sheetsma
balance, cloud and aerosol heights, as well as land
topography and vegetation characteristics. Carhlajd
Harding (2006) showed that the GLAS waveform (laser
return as a function of time) centroid is highlyredated to

the SRTM phase center elevation over densely vegkta
regions. In this paper, we present a methodologgdan
SRTM elevation, ICEsat/GLAS, and field data to map
mangrove forest height and aboveground biomass. We
focus on the Cienaga Grande de Santa Marta (CGSM),
Colombia, a large wetland complex where one ofdhgest
mangrove rehabilitation projects in Latin America i
currently underway (Botero & Salzwedel, 1999; Rarer
Monroy et al.,, 2004; Rivera-Monroy et al., 2006}arfie
man-made hydrological modifications in the regi@used
hypersaline soil conditions (N90 g kg—1 ) since 1860s
triggering a large dieback of mangrove wetlands247
km2 ). Thus, remote sensing tools are needed toiateaif
current freshwater diversions initiated in 1995 | whle
successful in restoring mangrove wetlands at thddeape
scale. Our objective is to build a baseline map to
guantitatively estimate the extent, height and kissnof the
mangrove forests in CGSM. We describe how to use
ICEsat/GLAS data to systematically calibrate SRTM
elevation data, potentially providing a robust neethto
extend 3D mapping of mangrove forests to otherspaft
the World. In addition, we collected field data stnuctural
attributes along four mangrove transects in CGSM to
calibrate SRTM and to derive a site-specific relaship
between mean canopy height and aboveground biomass.
The GLAS and field data do not overlap since weewer
unable to obtain accurate geolocation for our samgpl
points because of weak GPS signal under the demmpy.

We relied on distance and orientation using a méaasu
tape and a compass to locate the sampling pointhen
SRTM maps. The height-biomass relationship enables
mapping of biomass in CGSM by extrapolating witte th
calibrated SRTM canopy height estimates. Biomass
estimates in this ecoregion are badly needed tuateathe
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impact of mangrove mortality on nutrient cyclinge(i
carbon, nitrogen, phosphorus) and to understand theaw
loss of above- and belowground biomass affect dhe of
mangroves as carbon sinks.

Research studies have been conducted in Brazil for
ecosystem horizontal characterization using rersetesing,
(Moura et al., 2012), (Pontailler et al., 2003),gV et al.,
2005), (Galvincio, 2011), (Galvincio et al., 2012),
(Galvincio et al., 2011), (Giongo et al., 2011)iM& et al.,
2013) for mangrove forest, (Silva, 2012), (Framtaal.,
2012), but for vertical characterization of mangrderest
with lidar data, no studies have been conducted iyet
Brazil.

The main objective of this study was to develop a
methodology for processing airborne lidar data for
measuring height and crown diameter for mangrovests

in the north-eastern coastal areas of Brazil. Sigeci
objectives were to: (1) evaluate the most approgpiidar
data processing approach, such as area-basediddirad
tree methods, (2) investigate the most appropriate
parameters for lidar-derived data products wheimesing
height and crown diameter, such as the spatialuso of
canopy height models and ground elevation modat$;(8)
compare the accuracy of lidar estimates to field
measurements of height and crown diameter.

I. MATERIAL AND METHODS
Study area
The spatial location of the mangrove forests is gtudy is
in the Recife municipalities, Pernambuco state, zBra
Figure 1.
Lidar data
The airborne lidar data were obtained in April 20TBe
aircraft equipment on board included the followifigimble
Aerial Camera aerial camera X4, with four bodieghwi
integrated camera P65 + four sensors and Apo-Digihd
an Optech laser sensor Airbone Laser Terrain Mapper
Model (ALTM) Gemini 167. Moreover, planes were
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equipped with navigation systems consisting of pildib
and GPS guidance receivers.

In this study the aerial photographs were utilizent
visualization of the area. In implementing the alesurveys
the following parameters were used: Flight altitu680
meters Opening angle (FOV): 20; Overlap side (betwe
groups): 30% Min Number of tracks: 137; Averagenpoi
density: 5.51 / m2.

The horizontal reference datum used was the Gewcent
Reference System for the Americas - SIRGAS 2000 was
adopted as Vertical Datum, the Network of National
Reference Level (RRNN) - Imbituba (SC). The Progect
System used was Universal Transverse Mercator (UTM)
Field data

Data were collected on nine plots shown in Figur@1,
A2, A3, B1, B2, B3, C1, C2 and C3), each beingaasg of
20x20m, Figure 2a. Each areas denoted by A, B, @nd
include a cluster of three plots of 20x20m. Foiirdiehtion

of plots, we used nylon rope, calibrated metricetamd
bamboo stakes. In each plot, heights of 10 reptatea
trees were measured, giving a total of 90 measurtsTed
tree height. The tree heights were measured with a
telescopic pole and a hypsometer. The mean heigthteo
plots was calculated as the mean of all 10 meastiesd
heights in each plot, and the area height was ctedpas
the mean of three clustered plots. The field datdun this
study were also described in Barbosa (2010). Tharea
has central UTM coordinates x=290998 and y= 9104376
the B area has central UTM coordinates x = 290988\a
=9104974 and C area has x= 291537 and y = 9104388.
coordinates were obtained with a recreational gfaaemin
GPS, with an estimated average accuracy of 12mfiélke
data were collected for the A area on 07/25/200€ an
06/26/2009, for the B area on 08/20/2009 and ferGtarea
on 09/18/2009. The time discrepancy between thee licdita
acquisition and field data collection was nearlg $ears.
Table 1 shows the descriptive statistics of thil faata and
percentage of species per area.
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Fig.1: Spatial location of the Pina mangrove, mupédities Recife, Pernambuco state, Brazil, anttfigots.

While the number of plots may seem low, we woulguar
that field measurements in mangrove forests are/ ver
difficult to obtain, given the problematic accebsough the
coastal environment with little firm ground, mangeo
roots, tidal waters, complexity of the root systatmove
ground or water, and marshy areas. Moreso, ther lida
technology has been proven to have centimeter acgur
therefore we consider that the limited number aitphve
worked with is sufficient to provide significantasistical
evaluation of lidar's capability of estimating thertical
structure of mangrove forests.
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Table 1 — Descriptive statistics of the field dida

mangrove.
Number of Mean Sta_nd_a rd
Area | trees/1200Mm| height deviation | - dbh
in field (m) for height | (cm)
(m)
A 186 8.30 3.64 11.83
B 243 6.81 2.03 11.81
C 154 9.17 3.74 12.33
Percentage of species per area.
R. Mangle L A .
Area %) Racemosg schaueriana
(%) (%)
Al 72 19 9
A2 26 52 22
A3 6 63 31
B1 46 51 3
B2 28 67 5
B3 58 42 0
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C1 9.5 75.5 9.5
Cc2 2.5 59 38.5
C3 24 74 2
Mean 30.2 55.83 13.33
Il. METHODS

The first specific objective of our study was twéstigate
the most suitable approach for processing lidama dat
extract tree measurements, such as the point cioed

based approach and the individual tree approacte Th

individual tree approach is based on deriving paéated
surfaces of the ground and canopy top. Individtedd are
then identified and measured on the canopy heighdein
(CHM), as described below.
Canopy height model

m

10m

Fig.2 a) Design of field data collection; b) Resut CHM

at 0.5m spatial resolution.

To derive the CHM, lidar elevations were transfodnie
heights above ground and not the ellipsoid, toepgfl
vegetation heights, We used the software packagekQu
Terrain Modeler-QTM and its functions to derive Aieo

Ground Level

(AGL) heights

rather

than absolute

elevations. Some of the most common reasons fotimgan
to work in AGL space are to measure tree and redafttts,
to measure the height of potential vertical obsions
(VO’s), and to selectively remove vegetation andogyy
from a point cloud, thus enabling the user to sed a
identify objects under foliage or other obstructiohis
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tool calculates and assigns an AGL elevation valnoe,
addition to an absolute elevation value, to evarypin a
point cloud or every vertex in a surface model by
comparing heights to a bare earth model. The terreidel
could be user-derived or available from other sesiréVe
derived the terrain model using QTM, with a spatial
resolution of 5m. By interpolating top elevations the
point cloud with heights above ground, we derivbe t
CHM with two grid samplings, 0.5m and 1m. Figure 5
shows the CHM.

Locating individual trees and measuring heights emdvn
diameters

This study used the TreeVaW software for measuring
individual trees with lidar data. Details of the timads used

in the software can be seen in Popescu et al. j2808
Popescu and Wynne (2003). The software implements a
variable filter for identifying individual trees vidh is based

on a relationship between crown diameter and tedghh
derived through a regression model. The parameters
(coefficients) of this regression model can be Bjpeo the
forest and species measured with lidar data. Tveléhe
window calibration relationship, we developed aresgion
model between height and crown diameter using ogesc
measurements of 32 trees identified by visual aslyf the
CHM. When a tree is identified visually on the CHMege
total tree height can be obtained directly on th¢MChy
reading the elevation value at the top of the tfée crown
diameter were obtained by averaging two crown
measurements taken on two perpendicular directibRS,
and E-W using measurement tools available in th&lQu
Terrain Model software. The parameters that wel weién

the software Treevaw were Minimum Expected Crown
Width of 1.0m and a Maximum Expected Crown Width of
20m.

For analyses of accuracy of lidar data were utilizke
following criteria:

Root mean square error (RMSE)

The Root Mean Square Error (RMSE) (also calledrtod
mean square deviation, RMSD) is a frequently used
measure of the difference between values predibiec
model and the values actually observed from the
environment that is being modelled. These individua
differences are also called residuals, and the Rid&kes

to aggregate them into a single measure of predicti
power.

The RMSE of a model prediction with respect to the
estimated variablX,.qe is defined as the square root of the
mean squared error, equation (1):
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n
Zizl(XObSi - xmodel,i )2

n

equation (1)
whereX,,sis observed values aglq4e/is modelled values
at time/place.
The calculated RMSE values will have units. Howevlee
RMSE values can be used to distinguish model padace
in a calibration period with that of a validatioerjpd as
well as to compare the individual model performatecthat
of other predictive models.
Pearson correlation coefficient (r)
Correlation — often measured as a correlation tmefit —
indicates the strength and direction of a linedati@nship
between two variables (for example model output and
observed values). A number of different coefficierire
used for different situations. The best known & rearson
product-moment correlation coefficient (also calRearson
correlation coefficient or the sample correlatiaeficient),
which is obtained by dividing the covariance of tieo
variables by the product of their standard devieidf we
have a series n observations and n model values, ttie
Pearson product-moment correlation coefficient lmamised
to estimate the correlation between model and wb#ens,
equation (2).

RMSE=

P CESITEE)

\/Zinzl(xi -’ DZinzl(yi -y’

equation (2)
The correlation is +1 in the case of a perfect éasing
linear relationship, and -1 in case of a decreasimgar
relationship, and the values in between indicatesdiegree
of linear relationship between for example model an
observations. A correlation coefficient of 0 me#ims there
is no linear relationship between the variables.
The square of the Pearson correlation coefficiari, (
known as the coefficient of determination, desailbew
much of the variance between the two variablege#dbed
by the linear fit.
After obtaining the coefficient for the regressiequation
for crown as a function of tree height, the coééits were
inserted in TreeVaW to map individual trees fiemd then
to estimate their height and crown width for thedstarea.
To clarify, the regression coefficients are onlyedisby
TreeVaW to calibrate the continuously varying filgize to
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r =

identify trees, and not to estimate their crownttvidCrown
width is estimated as the average of two measursmen
taken on perpendicular profiles of the CHM arouimel tree
tops identified as local maxima.

We mapped individual trees and obtained heights and
crown widths estimates for both CHM spacings ofddnd
1m. Due the low accuracy of the recreational-gi@demin
GPS used to locate field plots, we report TreeVaalits

for two areas sizes, one equal to the field plét20x20m
and one with a buffer around the field plots, ceedeon the
same GPS plot locations, but covering 40x40m areas.
Point Cloud Metrics

The point cloud statistics were computed for bddixZDm
and 40x40m area sizes, in two situations. First, we
computed point cloud statistics for all laser psihigher
than 0.5m above ground, to exclude the effectsoof |
vegetation and aerial roots. This means that atitpdoelow
0.5m were excluded when calculating point cloudriogt
Second, we computed point cloud metrics for alletas
points above ground, i.e., with a height above Om.

V. RESULTS AND DISCUSSION
The correlation between height and crown diameter
obtained for the 32 trees was significantly highe3e were
the trees we visually identified to calibrate tharigble
window size in TreeVaW. The coefficient of deteration
was f = 0.69 and correlation was r= 0.83, as shown in
Figure 3. Popescu et al. (2003) obtainédbBtween 0.62-
0.63 and standard error of estimate of 1.36-1.4bm f
dominant trees in eastern United States forests.eGal.
(2000) development models of tree crown radiusséreral
conifer species of California and obtaineti\Rlues in the
range of 0.2691 to 0.6077 and RMSE values from&L60
1.48m. Hyde et al. (2005) examined the ability dhe
footprint lidar system to retrieve forest structuatiributes
in the highly variable terrain and canopy condisiaf the
Sierra Nevada Mountains in California. The agredgmen
between field and lidar measurements of canopyrcoas
only fair (r2=0.54, RMSD=19.6%, p <0.00) for plo{s
=112) where the limited sampling protocol was uskd.
contrast, at the 40 plots that were more intengivild
sampled, field and lidar estimates were in gooccegent
(r2=0.81, RMSD=9.4%, n =40, p <0.00). In our study,
results showed a relatively high value of fer mangrove
forest, in line with other findings in the lidatdrature.
After we obtained the parameter for regression &guawve
used the coefficients to parameterize TreeVaW. \8&d1a
minimum tree height of 1m, median filtering 3x3 gl
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y=0.0213x% +0.0019x + 2.1913
R2= 0.6864

Crown diameter (m)

0 5 10 15 20 25
Height (m)

Fig.3: Relationship between Height and Crown diamet
for 30 trees.

Wannasiri et al. (2013) studying the mangrove iitlial
tree detection showed a kappa coefficient of agesertK)
value of 0.78. In their study, the estimation obwn
diameter produced a coefficient of determinatiof) (Rilue

of 0.75, a Root Mean Square Error of the EstimBId$E)
value of 1.65 m, and a Relative Error (RE) valud f7%.
Tree height determination from lidar yielded an\R2ue of
0.80, an RMSE value of 1.42 m, and an RE value9d?%.
Similar results were obtained in our study. Butaading to
Wannasiri et al. (2013), an increase in the pesgntof
crown overlap results in an accuracy decrease ef th
mangrove parameters extracted from the lidar-dérive
CHM, patrticularly for crown measurements.

Sherrill et al (2008) evaluated the relative apibf simple
light detection and ranging (lidar) indices (i.engan and
maximum heights) and statistically derived candnica
correlation analysis (CCA) variables attained frdiscrete-
return lidar to estimate forest structure and folesmass
variables for three temperate subalpine foress.siBoth
lidar and CCA explanatory variables performed weith
lidar models having slightly higher explained vada and
lower root mean square error. Adjusted R2 valuag Wed3
and 0.93 for mean height, for the lidar and CCA
explanatory regression models, respectively. TheACC
results indicate that the primary source of valigbiin
canopy structure is related to forest height.

The height of mangrove trees estimated with lidad a
Treevaw was compared to field-measured height. hes t
field data were obtained in 2009, the differencéneen
lidar data acquisition and field data collectionswga5 year,
therefore we used the work of Gorforth Jr. And Tlam
(1980) in analyzing tree growth of red mangrove
(Rhizophora Mangle L.) in Florida, United Stateshiet
reports an average growth of 10cm/year. The fiala dised
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in our study were collected in 2009 with 30.2% of R
Mangle, Table 1. Considering that the increase rae t
height is 10cm/year, in 3.5 year the mangrove tieesur
study area increased their height by approximad&gm.
Therefore, the mean field-measured height woul®.4dm
when projected for 2013, to coincide with the tigniof the
lidar data acquisition, Table 2.

An interesting finding was to see that the grid ghmg of
0.5m was a better option for processing lidar diaa
mangrove forests, because when using the grid sagnol

1m, the lidar data overestimated the tree heighé mean
Treevaw-estimated height with a 0.5m CHM was 10.63m
for 2013, mean height field was 8.44m and meanhheig
CHM 0.5m was 9.48m, Table 2. The correlation coedfit
was r=0.60 between field data and 0.5m CHM, with
RMSE=2.8. As explained before, due to the fact that
coordinates were obtained with a recreational-gademin
GPS with an estimated average accuracy of 12ms it i
possible that the lidar area used to derive meawmts
does not coincide with the field plot. Thereforeg w
analyzed the lidar-derived measurements over bax2@n
and 40x40m areas, for both TreeVaW and area-based
methods. The larger 40x40m plot should compensatthé
GPS error when averaging estimates over this laages.
The correlation coefficient was 0.70 and RMSE=2dt,
both area®0x20m and 40x40m.

Coops et al. (2007) used lidar to measured foliagight
and to estimate several stand and canopy structure
attributes. The study focused on six Douglas-fir
[Pseudotsuga menziesii spp. Menziesii (Mirb.) Fodrend
western hemlock [Tsuga heterophylla (Raf.) Sartahds
located on the east coast of Vancouver Island,isBrit
Columbia, Canada, with each stand representindferefit
structural stage of stand development for forestlinvthis
biogeoclimatic zone. Tree height, crown dimensi@oser,
and vertical foliage distributions were measured®@m x

20 m plots and correlated to the lidar data. Th&igiheof
data collection was similar to our study, FigureCdops et
al. (2007) showed that measured stand attributeb as
mean stand height, and basal area were significantl
correlated with lidar estimates {R 0.85, P < 0.001, SE =
1.8 m and R = 0.65, P < 0.05, SE = 14.8 m2 ha-1,
respectively). Therefore, this study demonstrabes lidar
data can provide quantitative information on stand tree
height, which can be successfully modelled, praogdi
detailed descriptions of canopy structure.
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Table 2 — Statistical data of the field data ardhli data for mangrove.

Crown

N Height (m) diameter
(m)
L CHM CHM
L. . 0.5m 0.5m | Treeva| Treeva| Treeva| Treeva
. 0.5m L.1Im Field

Are | Fiel (1600 0.5m (20x20 | average Averag | Averag | w0.5m| w0.5m| w1.0m|w1l.0m| 05| 1.0

a d 1 (20x20 m) (20x2 Ogr]n) e e (20x20 | (40x40| (40x40 | (20x20 | m | m

m) (20x20 | (40x40 m) m) m) m)
area)
m) m)
200 | 201
9 3

Al | 67 9 12 3 8:'38 gél 8.44 9.73 10.32 10.32 11.26 10.82148 15')2
A2 | 31 11 7 2 82'3 87'6 13.80 12.08 12.23 12.23 13.9 13.'822'8 1(')0
A3 | 88 17 18 2 7é7 Sil 9.26 8.73 9.49 9.49 10.59 12.09 14"7 1(')5
T;)It 186 37 37 9 8.3 85'6 10.5 10.18 10.68 10.68 11.9¢ 12.2323'1 15')2

B1 | 114 13 21 0 72'3 77'6 6.88 5.47 7.55 7.55 8.92 - 1io -
B2 36 22 32 3 63167 4.62 5.72 6.79 6.79 7.96 6.7 0.9 0.6

7 2 9 6

B3 | 93 19 32 4 65')7 7.1 7.9 7.94 9.41 9.41 10 9.52 17'3 0
Tot 243 54 85 7 6.8 7.1 6.47 6.38 7.92 7.92 8.96 8.11 11103

al 1 6 2 3

Cl1 | 53 8 7 0 9.2 95'5 12.77 11.53 11.66 11.66 131 - 2.5

C2 | 39 12 8 1 82'98 942 13.94 13.62 13.66 13.66 16.8 15.9 637'0 252
C3 | 62 18 11 1 92'4 97'7 7.71 8.39 9.67 9.67 104 10.11 1é4 200
Tot 154 48 26 3 91195 11.47 11.18 11.66 11.66 134 13.C32'3 2.1

al 7 2 5 3
Mea | 104 46 49 6 | 20184 948 | o925 | 1008 1009 1145 11.1%8|12

n 9 4 6 4
www.ijaems.com Page | 439




International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-5, May- 2016]
ISSN: 2454-1311

Figure 4 shows the comparison between the number of
individual trees in the field data and the numbktrees
identified on lidar data by using Treevaw, with N of
0.5m. On average, TreeVaW was only able to identify
24% of the number of individual trees in the fiekin
(2007) studying individual tree species using lidar
obtained an average of 48% of the number of indiid
trees in the field data. The lower number of trees
identified by lidar in mangrove forests could bglained

by the fact that TreeVaW identifies local maximattae
tops. When trees crowns are well delineated faviddal
stems, TreeVaW should identify trees visible on the
CHM, i.e., dominant and co-dominant trees, but not
suppressed trees. Given that mangroves stems are
clustered together, their crowns are intricatelgrtapped

and multiple stems appear to have one crown. AR,suc
TreeVaW only counts crowns that are individually
separable on the CHM, but there may be multiplenste
counted in the field that compose such crowns.

[
=1
=

— Field
- —— Lidar (erid sampling = 0.5 cm)
g = /\
8200 —
: \
@
£ 150
T
g 100
z
50
0 T T
A B ¢

Area

Fig. 4: The number of individual tree for mangrove
species after isolating lidar point clouds withdjri
sampling 0.5m and comparison with field data.

Area-based method - Point Cloud Metrics

Figure 5 (a and b) and 6 (a and b) show statifticthe
A, B and C plot areas for point cloud metrics dfri.and
Om, respectively. Note that the difference betwpeimt
clouds metrics of 0.5 and Om was small.
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Fig.5: Statistics of A, B and C area for point aoonetrics of 0.5m.
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Fig.6: Statistics of A, B and C area for point aauetrics of Om.

We analyzed the CHM of 0.5m and 1m for all area of
Pina mangrove. For a grid sampling of 0.5m and tza s
to estimate AGL, descriptive statistics are showiable

3. In this table showed statistical differences mvhe
processing the lidar data with CHM derived at 0.&nal
1m spacings. Based on our findings, we recommeimngj us
0.5m CHMs for mangrove forests when processing lida
data because the Std. Error was minor 0.03. Giten t
multiple mangrove stems grown into a single croan,
higher-resolution CHM would be recommended for

wWwWw.ijaems.com

mangrove forest as processing methods such as avéeV
could identify more trees on higher-resolution CHMs
more local maxima could be identifiable in such
situations. Lower-resolution CHM, such as 1.0m were
larger grid spacing, will present fewer local maairor
tree top identification.
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Table 3 - Sample grid for AGL.

(0.5cm)
Variable N Minimum Maximum Sum Mean (m) Std. Std (m) Variance
(m) (m) Error
(m)
Crown 66,963 0.5 8.5 120573.06 1.80 0.003 0.84 0.61
diameter
(m)
Height 66,963 1.36 24.34 696651.55 10.40 0.014 3.67 13.54
(m)
(Im)
Crown 12,613 1 9 29048.75 2.30 0.007 0.85 0.72
diameter
(m)
Height 12,613 1.3 24.09 160539.77 12.72 0.034 3.91 15.31
(m)

When comparing the results of CHM 0.5m, points dbbmetrics of 0.5m and points clouds metrics of riste that the
method of point cloud metrics of 0.5m was the battmice to estimate mangrove height with lidaadat

V. CONCLUSIONS
Lidar data can provide quantitative information stand
and tree height, which can be successfully modelled
providing detail descriptions of canopy structure.
Treevaw was only able to identify trees visible the
canopy height model, i.e., dominant and co-dominant
trees, but not suppressed trees.
The results of the current study show that lidaadauld
be used to estimate the height and average crown
diameter and to improve estimates of others marmgrov
forest biophysical parameters of interest by foogsat
the individual tree level. The crown diameter estiea
with lidar at the individual tree level and its uer
biomass assessment have been well document bydopes
et al. (2003). The method of point cloud metricOdm
provided better results for estimating mangroveghiei
with lidar data.
The research presented in this study contributethe¢o
overall knowledge of lidar measurements of canopy
structure and tree dimensions in complex ecosystems
such as the mangrove forests. The utility of thBAR
data collected over forest canopies and the prowess
methodologies developed in this study and the eeén
lidar literature show the ability of lidar remotensing to
extract variables, which directly correlate to mavg
tree structures, for a better understanding of derp
mangrove ecosystems ecology.
The use of remote sensing data to obtain vertical
structural of mangrove plant is important becaushice
very expensive and hard work related to
hydrodynamic of high variation in the field. Undigh
tide is difficult the human access in this areae Témote

the

WWW.ijaems.com

sensing lidar data can be obtained independentithef
water level in this ecosystem.

In order, the remote sensing data are advantageous
because permit evaluate the spatial and temporiziticen

in a shorter time of a huge amount of informatiém.
different world areas, the mangrove monitoring @& n
efficient, neither accurate, because the knowledfe
physical, natural and human action characterizatibn
this ecosystem is unclear. The improvement of émeote
sensing technology can to contribute to monitorofg
mangrove on four continents and six geographiaibres

of the planet, mostly occurring in Central America
(Caribbean), India, the Indochina Peninsula, Byeanild
Australia. In Brazil, 13 of the 17 coastal statapitals are
located near the sea. Therefore, not coincidentéfly
coastal areas are under greater environmentalk shres
distributed among the various ecosystems in thesasa
mangroves have suffered most from a disorderly urba
expansion. Is necessary to know the actual situaiad

the human impacts to improve the monitoring and
contribute to the public polices of these ecosystem

The results suggest that further studies must teloged
using new techniques, for example drones, to imptbe
data and promote advanced in knowledge of the
mangrove ecosystem in the world. It is important to
develop adjusted equation specific to the mangrove
ecosystem under different environmental conditions.
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