
International Journal of Advanced Engineering, Management and Science (IJAEMS)
Infogain Publication (Infogainpublication.com

www.ijaems.com

Optimizing the Audio Decoding
Hardware Capability

Prasad Renukdas

School of Computer Science and Engineering,

Abstract— Performance in android based devices is a major
concern. A number of frame-drops can be seen while
a 4k video on a less powerful device. A multi
set-top box should be capable of playing the 4k videos
alongside of its basic functionalities. Sometimes the hardware
allotted for the set-top box may not be up to the mark. Hence,
it is difficult to handle 4k videos at a smoother rate. To tackle
the above problem we have come up with the solution which
tunnels the compressed/uncompressed audio track directly to
the Smart-TV based upon its capability. The solution is built
for ST’s set top box. In this paper we discuss basics of set top
box, android audio architecture and the solution for frame
drop backed by the experimental results and by using
standard testing methods.

Keywords— Smart-TV, tunneling, 4k videos, frame drops

I. INTRODUCTION
Android set-top box is an ongoing R&D pr
the electronic tech giants like STMicroelectronics
box runs the latest android lollipop. As the cable television and
satellite television industries enjoy years of sustained
cable/satellite operators are now investing in the “digitization”
of their systems. This is resulting in the transition of the TV
transmission infrastructure from an analog environment to a
digital one. To use current analog television sets to rece
these digital broadcasts Set Top Box (STB) is necessary.
Figure 1 show the flow of signal from satellite antenna to TV.

Fig.1: diagram showing flow of signal from satellite antenna
to TV

International Journal of Advanced Engineering, Management and Science (IJAEMS)
Infogainpublication.com)

he Audio Decoding Based Upon
Hardware Capability: An Android NUPlayer

Implementation
Prasad Renukdas, Prof. Swarnalatha P

School of Computer Science and Engineering, VIT, Vellore, Tamil Nadu

Performance in android based devices is a major

drops can be seen while playing
less powerful device. A multi-purpose android

top box should be capable of playing the 4k videos
alongside of its basic functionalities. Sometimes the hardware

top box may not be up to the mark. Hence,
difficult to handle 4k videos at a smoother rate. To tackle

the above problem we have come up with the solution which
tunnels the compressed/uncompressed audio track directly to

TV based upon its capability. The solution is built
this paper we discuss basics of set top

box, android audio architecture and the solution for frame
by the experimental results and by using

videos, frame drops.

INTRODUCTION
top box is an ongoing R&D project at in most of

the electronic tech giants like STMicroelectronics. This set-top
box runs the latest android lollipop. As the cable television and
satellite television industries enjoy years of sustained growth,
cable/satellite operators are now investing in the “digitization”
of their systems. This is resulting in the transition of the TV
transmission infrastructure from an analog environment to a
digital one. To use current analog television sets to receive
these digital broadcasts Set Top Box (STB) is necessary.

show the flow of signal from satellite antenna to TV.

diagram showing flow of signal from satellite antenna

Set-Top Box or STB has become an integral part of TV
viewing in many parts of the world. We commonly see this
sleek looking device sitting on side of TVs. Though this
device looks slim and simple but it is one of the most complex
embedded systems today. ST
day by day. Few of the common features in current generation
STBs are time shift mode viewing, recording, Internet based
viewing, video on demand, Full High definition video output
etc.
In this paper we will be discussi
architecture which is the preliminary requirement for
understanding how the audio calls are handled. We will also
discuss analysis and design of
will see snippets of implementation and test result

II. OVERVIEW OF THE
In this section we will see the general architecture of STB. We
will also see the android audio architecture which will give us
a brief understanding regarding android audio methods
invocations.

Fig. 2:STB Architectur

Figure 2 shows the complete set up used for the
implementation and testing of the module. We used ST’s
Cannes 2.5 board for development and testing. An STMC box

 [Vol-2, Issue-5, May- 2016]
 ISSN: 2454-1311

 Page | 444

Based Upon
ndroid NUPlayer

Vellore, Tamil Nadu, India

Top Box or STB has become an integral part of TV
viewing in many parts of the world. We commonly see this
sleek looking device sitting on side of TVs. Though this
device looks slim and simple but it is one of the most complex
embedded systems today. STBs are increasing their feature set
day by day. Few of the common features in current generation
STBs are time shift mode viewing, recording, Internet based
viewing, video on demand, Full High definition video output

we will be discussing the basic android audio
architecture which is the preliminary requirement for
understanding how the audio calls are handled. We will also
discuss analysis and design of our system. In the final step we
will see snippets of implementation and test results.

THE PROPOSED SYSTEM

In this section we will see the general architecture of STB. We
will also see the android audio architecture which will give us
a brief understanding regarding android audio methods

STB Architecture

Figure 2 shows the complete set up used for the
implementation and testing of the module. We used ST’s
Cannes 2.5 board for development and testing. An STMC box

International Journal of Advanced Engineering, Management and Science (IJAEMS)
Infogain Publication (Infogainpublication.com

www.ijaems.com

was used for sending the images to the Board via host
computer. Stream server is an optional entity which was used
for testing live streams.
SoC
The System on chip contain two ARM processors ST SDK2
like Orly B2020, one SH-4 (used for floating point
calculations) on ST SDK1 like lille, leage c, cardiff, one
ST231 and one MALI (used as a graphics engine) processor.
Stream Server
The stream server contains all the streams to be viewed on the
receiver in digital format, it is connected to a MOD card which
converts the signal to Radio Frequency and sends it the
TUNER card on the board.

III. SDK2 SOFTWARE OVERVIEW
ST has a comprehensive media framework based on hardware
codec blocks available in Cannes 2 (STiH410) platform. The
framework is known as Streaming Engine (henceforth called
SE) which has a complete player implementa
AV sync) and is implemented as a kernel module. However
Android mandates the use of OMX IL APIs for all codec
related functionality and hence ST provides an OMX IL layer
based on the underlying SE kernel module. The OMX IL is
implemented in both user space and kernel space. The kernel
space module is called OMXSE (OMX interface to the
underlying Streaming Engine). Apart from this the V4L2 and
DVB APIs are also used. The user space OMX IL consists of a
set of C++ classes for audio and video omx components and
ports which handle the OMX state machine. Internally they
make use of the V4L2 and OMXSE kernel drivers to access
the underlying hardware codecs.
The following figure shows implementation of the OMX IL

Fig.3:SDK2 architecture

STAGEFRIGHT OMX

LibStageFright

OMXSE LINUX
DVB

STREAMING ENGINE

OMX Core OMX VIDEO

International Journal of Advanced Engineering, Management and Science (IJAEMS)
Infogainpublication.com)

was used for sending the images to the Board via host
Stream server is an optional entity which was used

The System on chip contain two ARM processors ST SDK2
4 (used for floating point

calculations) on ST SDK1 like lille, leage c, cardiff, one
one MALI (used as a graphics engine) processor.

The stream server contains all the streams to be viewed on the
receiver in digital format, it is connected to a MOD card which
converts the signal to Radio Frequency and sends it the

OVERVIEW
ST has a comprehensive media framework based on hardware
codec blocks available in Cannes 2 (STiH410) platform. The
framework is known as Streaming Engine (henceforth called
SE) which has a complete player implementation (including
AV sync) and is implemented as a kernel module. However
Android mandates the use of OMX IL APIs for all codec
related functionality and hence ST provides an OMX IL layer
based on the underlying SE kernel module. The OMX IL is

both user space and kernel space. The kernel
space module is called OMXSE (OMX interface to the
underlying Streaming Engine). Apart from this the V4L2 and
DVB APIs are also used. The user space OMX IL consists of a

mx components and
ports which handle the OMX state machine. Internally they
make use of the V4L2 and OMXSE kernel drivers to access

implementation of the OMX IL.

SDK2 architecture

IV. NUPLAYER
NuPlayerDriver provides the implementation of
MediaPlayerInterface and is used for all kinds
playback. However NuPlayerDriver is more of a wrapper and
the actual implementation is through the NuPlayer class.
NuPlayer control flow is fully asynchronous and based on the
ALooper/AHandler classes described in the following
diagram:

Fig.6:NUPlayer overview

Foundation Classes- Messages
Class names start with letter “A” for “asynchronous”.
Following are the main classes

• AMessage–Represents data which need
asynchronously. Contains
representing the kind of message. Contains
data items. Each data item has a unique name and by
using a C union support is provided for all kinds of data
types including object pointers. Has
Binder parcel into an AMessage and vice
An event is a timed “AMessage”.

• AHandler–Represents an entity which can process an
AMessage. Processing is done in onMessageReceived()
function.

• ALooper–Represents a thread which runs an infinite loop.
Maintains a queue of events. Anyone can post a
an “ALooper” which is put at the end of event queue. The
thread loop removes events from the queue (based on
timing of the AMessage) and delivers them to an
appropriate handler.

• ALooperRoster–Singleton object which keeps a list of
ALoopers and associated AHandlers. The interaction

V4L2

STREAMING ENGINE

OMX AUDIO

 [Vol-2, Issue-5, May- 2016]
 ISSN: 2454-1311

 Page | 445

NUPLAYER OVERVIEW
NuPlayerDriver provides the implementation of
MediaPlayerInterface and is used for all kinds of streaming
playback. However NuPlayerDriver is more of a wrapper and
the actual implementation is through the NuPlayer class.
NuPlayer control flow is fully asynchronous and based on the
ALooper/AHandler classes described in the following

NUPlayer overview

Messages

Class names start with letter “A” for “asynchronous”.
Following are the main classes

Represents data which needs to be handled
asynchronously. Contains a field called “what”

kind of message. Contains an array of
data items. Each data item has a unique name and by
using a C union support is provided for all kinds of data

pes including object pointers. Has methods to convert a
Binder parcel into an AMessage and vice-versa. Event–
An event is a timed “AMessage”.

Represents an entity which can process an
AMessage. Processing is done in onMessageReceived()

Represents a thread which runs an infinite loop.
Maintains a queue of events. Anyone can post an event to
an “ALooper” which is put at the end of event queue. The
thread loop removes events from the queue (based on
timing of the AMessage) and delivers them to an

Singleton object which keeps a list of
associated AHandlers. The interaction

International Journal of Advanced Engineering, Management and Science (IJAEMS)
Infogain Publication (Infogainpublication.com

www.ijaems.com

between looper and handler is done via this singleton
object. Each looper needs to associate a handler with
itself. When processing the event from its queue, a looper
delivers the message to the associated handler.

NUPlayer Classes

Fig.4:NUPlayer Classes and their relation

NuPlayer is designed for streaming use-cases and e
follows asynchronous message based control mechanism.
IMediaPlayerService::create() API gives an IMediaPlayer
interface and calling IMediaPlayer::setDataSource() creates a
MediaPlayerBase object which is an NuPlayerDriver object
in case of streaming playback. NuPlayerDriver’s main role is
to act as a looper to handle message passing mechanism while
NuPlayer acts as the message handler and performs the actu
functions of a media player. NuPlayer contains an object each
of a Source, a Decoder and a Renderer. Each of these classes
is defined inside the scope of NuPlayer class
acts a message handler and is associated with
which is implemented by NuPlayerDriver.
NuPlayer also maintains reference to the audio sink and native
window passed by the application/client. These
audio/video rendering. Note that the Renderer class only
manages the A/V sync and actual rendering is done by the
Decoder class itself.Decoder also maintains the reference to
application passed native window and uses it to get decoder
output buffers and rendering the video outp
decoding is implemented via ACodec class which is the
“asynchronous” equivalent of OMXCodec
player) and the Decoder class is just a wrapper for ACodec
ACodec implements AHierarchicalStateMachine and follows
the standard pattern of OMX component state.
In a typical playback usecase, the application invokes
following set of API calls.

MediaPlayer player = new MediaPlayer();

International Journal of Advanced Engineering, Management and Science (IJAEMS)
Infogainpublication.com)

and handler is done via this singleton
needs to associate a handler with

itself. When processing the event from its queue, a looper
delivers the message to the associated handler.

NUPlayer Classes and their relation

cases and exclusively
follows asynchronous message based control mechanism. The
IMediaPlayerService::create() API gives an IMediaPlayer

IMediaPlayer::setDataSource() creates a
MediaPlayerBase object which is an NuPlayerDriver object

NuPlayerDriver’s main role is
to act as a looper to handle message passing mechanism while

ler and performs the actual
NuPlayer contains an object each

Each of these classes
class. Each of them

acts a message handler and is associated with the same looper
NuPlayerDriver.

NuPlayer also maintains reference to the audio sink and native
window passed by the application/client. These are used for

Note that the Renderer class only
manages the A/V sync and actual rendering is done by the

Decoder also maintains the reference to
d uses it to get decoder

and rendering the video output. Actual
decoding is implemented via ACodec class which is the
“asynchronous” equivalent of OMXCodec (part of Stagefright
player) and the Decoder class is just a wrapper for ACodec.
ACodec implements AHierarchicalStateMachine and follows

tern of OMX component state.
In a typical playback usecase, the application invokes

MediaPlayer player = new MediaPlayer();

player.setDataSource(url);
player.setSurface(surface);
player.prepare();
player.start();
player.stop();
player.release();

NUPlayer DataFlow Sequence diagram

Fig.5: NUPlayer sequence diagram for DataFlow

V. IMPLEMENTATION

A demon is created which reads the TV's capabilities for
audio decoding. If TV is capable of decod
stream, AUDIO_OFFLOAD flag is set in the NUPlayer class
which bypasses audio directly to the TV hardware through
hal. When the streams are passed by NUPlayer to the
underlying audio player, it will simply forward it to the
Following are the steps in the implementation:
1] Daemon reads the HDMI capability on startup.
2] Read data is stored in the data structure.
3] Following steps take place when a 4k Video stream request
takes place:

 [Vol-2, Issue-5, May- 2016]
 ISSN: 2454-1311

 Page | 446

player.setDataSource(url);
player.setSurface(surface);

NUPlayer DataFlow Sequence diagram

NUPlayer sequence diagram for DataFlow

IMPLEMENTATION AND TEST RESULT

SNIPPETS
A demon is created which reads the TV's capabilities for
audio decoding. If TV is capable of decoding the audio
stream, AUDIO_OFFLOAD flag is set in the NUPlayer class
which bypasses audio directly to the TV hardware through
hal. When the streams are passed by NUPlayer to the
underlying audio player, it will simply forward it to the TV.

he steps in the implementation:
1] Daemon reads the HDMI capability on startup.
2] Read data is stored in the data structure.
3] Following steps take place when a 4k Video stream request

International Journal of Advanced Engineering, Management and Science (IJAEMS)
Infogain Publication (Infogainpublication.com

www.ijaems.com

3.1 NUPlayer reads the hardware capability
3.2 Is TV capable of decoding?
3.3 If yes then pass the compressed audio streams

directly to TV.
4] Audio and Video sync is handled by TimedQueueEvent
Above method reduces the overhead of audio decoding under
the assumption that TV is capable of performing audio
decoding. If TV is not capable then the the decoding will be
handled by the board itself.
Following is the code snippet for the daemon reading
hardware capability.

Fig. 6 Daemon code snippet
Performance testing
Performance of 4k videos was tested using a monitor tool
Monitor tool is an ST-internal tool. It displays the frame drop
rates, total frames displayed, queued, repeated and
We recorded certain readings before the implementation. Later
we ran the same video for the same build. Following are some
of the screenshots before and after the changes.

International Journal of Advanced Engineering, Management and Science (IJAEMS)
Infogainpublication.com)

3.1 NUPlayer reads the hardware capability

3.3 If yes then pass the compressed audio streams

4] Audio and Video sync is handled by TimedQueueEvent
Above method reduces the overhead of audio decoding under
the assumption that TV is capable of performing audio
decoding. If TV is not capable then the the decoding will be

Following is the code snippet for the daemon reading

Fig. 6 Daemon code snippet

Performance of 4k videos was tested using a monitor tool.
internal tool. It displays the frame drop

rates, total frames displayed, queued, repeated and released.
We recorded certain readings before the implementation. Later
we ran the same video for the same build. Following are some
of the screenshots before and after the changes.

Fig.7: Monitor reading before the changes

Fig.8: Monitor tool readin

We also ran CTS(Compatibility test Suite) by google for
media playback. Initially there were a lot of test failures. After
the implementation the failures were greatly reduced.
Following are some of the snippets for CTS ran for media
package.

Fig.9: CTS results before our patch

 [Vol-2, Issue-5, May- 2016]
 ISSN: 2454-1311

 Page | 447

Monitor reading before the changes

Monitor tool reading after changes

We also ran CTS(Compatibility test Suite) by google for
media playback. Initially there were a lot of test failures. After
the implementation the failures were greatly reduced.
Following are some of the snippets for CTS ran for media

CTS results before our patch

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-5, May- 2016]
Infogain Publication (Infogainpublication.com) ISSN: 2454-1311

www.ijaems.com Page | 448

Fig.10: CTS results after our patch

If including units in the label, present them within parentheses.
Do not label axes only with units. In the example, write
“Magnetization (A/m)” or “Magnetization {A[m(1)]}”, not just

“A/m”. Do not label axes with a ratio of quantities and units.
For example, write “Temperature (K)”, not “Temperature/K”.
Results

We successfully improved the 4k video playback on STB
by tunneling the audio directly to the tv. An initial lag was
seen after the video starts. Later the video plays smoothly with
very little frame drops.

)

VI. ACKNOWLEDGMENT

I would like to thank Deepak karda for mentoring me in this
project. I would also like to extend my thanks to Munish
Bhardwaj and Prof. Swarnalatha for all the encouragement
and support.

REFERENCES
[1] J. Barba, J.C. López, D. de la Fuente, F. Rincón,

“OpenMax Hardware Native Support for Efficient
Multimedia Embedded Systems”

[2] Karim Yagbmour, Embedded Android, published by
Oreilly

[3] Sang-Pil Moon, Joo-Won Kim, Kuk-Ho Bae, Jae-
Cheon Lee and Dae-Wha Seo, “Embedded Linux
Implementation on a Commercial Digital TV
System,” in IEEE Transactions on Consumer
Electronics, Vol. 49, No. 4, NOVEMBER 2003

[4] Damian Hobson-Garcia, Katsuya Matsubara, Takanari
Hayama, Hisao Munakata, “Integrating a Hardware
Video Codec into Android Stagefright using
OpenMAX IL”

