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Abstract— lllumination estimation is basic to white
balancing digital color images and to color constgnThe

key to automatic white balancing of digital imagesto
estimate precisely the color of the overall scene
illumination. Many methods for estimating the
illumination’s color has proposed. Though not the@sin
exact, one of the simplest and quite extensiveld us
methods are the gray world algorithm, white patoigx-
RGB, Gray edge using first order derivative andygesige
using second order derivative, saturation weightifdne
first-three methods have neglected the multipletigpurces
illuminate. In this work, we investigate how illurate
estimation techniques can be improved using fuzzy
membership. The main aim of this paper is to evalua
performance of Fuzzy Enhancement based saturation
weighting technique for different light sourcesngge,
multiple, indoor scene and outdoor scene) unddeutifit
conditions. The experiment has clearly shown
effectiveness of the proposed technique over tadable
methods.

Keywords— Fuzzy Enhancement, White Balancing
llluminant, Saturation Weighting and Color Constanc
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l. INTRODUCTION
Many images, however, reveal a mixture of illumesatvith
dissimilar chromaticity. Consider, such as, indesoenes
which are affected by both indoor light sources aattioor
light coming through the windows. So the indoor rece
shows great affectability than that of the outdscene and
hence theilluminate of the light sources gets dalri
Extending obtainable color constancy techniques to
effectively compute multi-illuminant estimates area
challenging problem.
In this paper, a new method is presented that esatdlor
constancy under different illuminated light sources. for
single as well as for multi illuminate. As colornstancy is
broadly categorized into two categories: low-lestdtistic
based group and learning based group. The tradlition
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methods like Gray World, White Patch and max-RGB al
are falling into this category, but learning basgeup
requires some prior knowledge.

So the proposed methodology is considered accotdittge
following criterion: 1) it should be able to compagith
scenes containing single and multiple light sour@sit
should work on a single image; 3) no human interompis
required; 4) no prior knowledge of the light sowrcs
required.

In this paper, we originate and experimentally carepwo
different strategies for illuminate estimation. &iv an
undetected image, it is first classified as indoooutdoor,
and then processed with the algorithm suited far thass.

» Class-Independent (CI): the same algorithm isliegp
without taking into consideration the image claBise best
one has chosen by the vigorous statistical analysis

» Class-Dependent Algorithms (CDA): for each class
different algorithm is useful. The parameters ofchea
algorithm are optimized for the equivalent claske Toest
algorithm for indoor and the best algorithm for dadr are
selected by the statistical test. Given an unoleseimnage,
it is initially classified, and then processed withe
algorithm chosen for the predicted class.

Il. COLOR CONSTANCY ALGORITHMS

Various color constancy techniques are as follows:

Gray world

White patch

Gray edge T order derivative

Gray edge %' order derivative

5. Modified Gray World

2.1 Gray World

Gray-World (GW) is well-known color constancy metho
by the assumption which assumes that the regular
reflectance of surfaces in the world is achromalibis
assumption is held magnificently: in an authentiorld
image, in most cases it is true but presently eitst of
different color variations. The variations colorge aandom
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and independent; the regular would converge tontean
value, gray, by given an enough amount of sam@@etor
balancing algorithms uses this assumption by fgrdis
images to have a common average gray value duse B, i

G and B components. In case, a graphic is takemrby
electronic digital camera using a particular ligiti
environment, the effect from the special lightirggtcis easy

to remove by enforcing the gray world assumptiothimi
the image. As a result of approximation, along frtme
image is really a lot far better an original scglt.

2.2 White Patch

White Patch (WP) method attempts to find the olgject
which have been truly white, from the scene; byuassg

the white pixels are also the brightest (I=R+G+Bjhite
Patch approach is conventional the Color Constancy
adaptation, trying to find the lightest patch forwdite
reference comparable to how the human visual systses.

In White Patch, highest value within the image isite.
White Patch algorithm is best suited for forestegaty
[18].

2.3 Gray Edge 1' order derivative

In gray Edge ¥ order derivative 4-neighbouring pixels are
considered. The primary derivative-based edge tletec
operator detects image edges by computing the graph
gradient values like Robert operator, Sobel oper&uewitt
operator [18].

2.4 Gray Edge 2° order derivative

The 8-neighbouring pixels are considered, unlike 4-
connected pixels. In 8-connected, more informatfon
image correction is available. Gray Edge usirijotder
derivative doesn't proof to become efficient beeaaach
pixel considers its 4-neighbouring pixels. So,his fprocess
not all the information is accessible for color remtion
[18].

2.5 Saturation Weighting

Saturation Weighting is based on the strong tendefthe
performance changes according to the saturationesal
Differently weighted pixels based on their satunatvalues
will improve the performance of the color constafiy)].

v g “?

|

Input Image b) Result of Saturation Wiigp
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2.6 Modified Gray World
In this method, first, saturation weighting functias
incorporated into the gray world method, whichadled as
gray world with saturation weighting (GWSW) giveyt b
w(f () f,(x)dx = ke; 1)
Wheres denotes the saturation strength factor apés (the
saturation weighting function,
w (f(x))= (1-S(f(x))) @)
The smoothing operation reduces the control ofegisan
image and it was proven to be helpful for improvithg
color constancy. By incorporating minowski norp) énd
smoothing operation o) into GWSW, the better
performance has achieved than the general graydworl
method.
[l FUZZY MEMBERSHIP BASED IMAGE
ENHANCEMENT
Previously, no work has done over fuzzy membersHiys
paper work has done work on fuzzy membership based
color image enhancement using edge preservingifidgie
Fuzzy membership has used to prevent over enhamteme
problem. Although, it provides enhancement to dhlyse
objects which demands it. Also, it enhanced theedbj
according to membership value. Basically, it deside
whether to enhance the object or not [19].
As fuzzy membership exploits two classes because we
utilize dual membership functions in this paper kvor
Improved results have extracted for color constafnogn
optimal method based on fuzzy membership with edge
preservation filtering. An estimation of the propds
technique is also drawn with existing techniqudse t
comparisons have evidently shown that the fuzzyethas
color constancy outperforms over the obtainablartegies
[19].

PROPOSED METHODOLOGY TO IMPROVE
SATURATION WEIGHTING

Saturation Weighting is based on the strong tengehthe
performance changes according to the saturationesal
Differently weighted pixels based on their satunatvalues
improved the performance of the color constancy The
present paper work proposed to complete variougesta
which have to be preceded following and first metfiogy
will discuss datasets used for dissertation wosldescribed
below:
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INPUT COLORED IMAGES

y

APPLY SATURATION WEIGHTING BASED
COLOR CONSTANCY (applying after gray edge
using first and second order derivative)

v

ENHANCEMENT USING FUZZY MEMBERSHIP
AND EDGE PRESERVING

.

OUTPUT IMAGE

Fig.2: Proposed Methodology

4.1Dataset:

The color constancy image dataset is a collectibr2®o
photographs of single and multiple illuminationsdan
different conditions. In this dataset, the totaimier of 25
images, this has taken at different positions unliféerent
illuminate. Few examples have shown in the figur&@me
of these are given below.

Fig.3: Sample pictures (adapted from dataset) [53]

In total, the images are divided into 25-30 clifeken at
different locations under different illumination.oi@e
examples are shown in the Figure 1. Given imagesaden
from different data sets.
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V. FLOW CHART
Flow chart of proposed methodology describes variou
phases step by step, which clarify the proper wylof
current methodology [19].
Below are the steps for the proposed algorithm:
Phase 1:Select the input image of size M* N and changed
into the digital image, then locate the dimensidnaa
image using the equation:
[M, N, ~]=SIZE (I) 3)

Where M represents row, N represents column, ~Repts
any channel i.e. red, green or blue and | represtre
image.

Applying Fuzzy membership rules

In Fuzzy membership for gray image enhancement and
smoothing two virtues considered. First approachFis..
THEN ELSE rules for image enhancement, this is to
enhance the pixels some directive fuzzy rules sase
human-like analysis are given and these rules emergted
from the neighbourhood pixel of the image. The seco
method relays to a rule-based smoothing. Hereherbésis

of neighbourhood compatibility dissimilar filteradses are
developed. Further, for color images Enhancemeeeti-

D histograms (RG, GB, BR) technique are used amd fo
color image enhancement using LHS color model,
equalization method is used. In the fuzzy approacdme
pixel property, like gray tone or color intensity,modeled
into a fuzzy set using a membership function (gidar
membership function). In this, an image can be idensd

as an array of fuzzy singletons having a membergaipe
that denotes the degree of some image properheinange.
Rules are described as below:

1) The fuzzy rule for class C1 is represented hsvis:

If the difference between x and M is LARGE then the
intensity of stretching should be SMALL. The abawute
indicates that the pixel values closer to M will éd¢ended
higher, whereas values farther from M will be exkenh
lesser. Pixel values in between will be extended
proportionately [49].

The following mathematical representation is useltere x

€ C1.

Once the membership value for x is obtained, therast
enhanced case for class C1 is computed as follows:

Hpy (X) =1- (M= X)/M 4)

Xe =X+ X) K (5)

Mp1 (X) decides what quantity of stretching paramétdras

to be added to x to get the enhanced value xe.fUimy
membership value g4 (X) for class C2 is based on the
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concept of how far the intensity value x is frone #xtreme
value E.

2) The fuzzy rule for class C2 is represented bevis:

If the difference between x and E is LARGE then the
intensity of stretching should be LARGE. The abouk
indicates that the pixel values closer to E willebgensive
lesser whereas values beyond E will be extendetehig
[49].

The following mathematical demonstration is usebere x

€ C2.

Hpz (X) =E-X/E-M (6)
Once the membership value for x is obtained, therast
enhanced xe for class C2 can be computed as follayys
(X) decides what quantity of stretching parametearid the
intensity value x has to be utilized to get the iayed value
xe.

The substitution of the old x values of the V comemat
with the enhanced xe values will cause the V corepbito
be stretched resultant contrast and brightness neela
component Ve. This improved achromatic informathom
can be shared with the pre-served chromatic infooma
(Hue and Saturation components) to obtain enhamecage
HSVe which is finally converted to enhanced RGBage
Fuzzy membership function

Membership function used is triangular membership
function. A triangular membership function is based
three limits {a, b, c} as follows:

Triangle (x; a, b, ¢) = {0,xa
-/ b-a,&ax<b
-8/ c-h, lEx<c
(694

Table.l: List of Various Parameters Used in Fuzzy
Enhancement Implementation

Nature Description

K Control parameter

M Control parameter

C, Class one having range[0-M-1]
C Class two having range[M-255]
uD, First membership value
ubD, second membership value
X intensity value

Xe Enhanced intensity value

\% value

Ve Enhanced value
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Phase 2:Then fuzzy membership have been added to the
saturation weighting technique in order to improte
results.

Phase 3:But if in some cases, the edges of the image have
been loose and then in that case we have appleedge
preserving filter as a post processing. Mediarrifty has
been used as an edge preserving filtlepreserves edges
while removing noise We have made use of the 2-D
median filter where 2-D represents an array. lgeful in
preserving edges in an image. It includes furtteps:

Step 1:The initial step in the proposed method is to gean
the given RGB image of size P x Q into HSV alonghwi
computing the histogram h(x) where€xV. h(x) specifies
the number of pixels in the figure by means of ristyy
value x. Proposed method uses two strengthening
parameters M and K, which handles the amount athwhi
the intensity value x has to be increased.

Step 2:Now, extract the V component from HSV.

Step 3: The value of K can be computed empirically
according to what level the stretching is requifecm the
experimental analysis, we fixed the value 128 fomiKich
gives better results for the low contrast and loighi color
images. Once the membership value of x is caladjdtes
contrast enhanced valug for class C2 can be computed.
Step 4: The factor M separates the histogram h(x) into two
categories or classes. The first class C1 contpirsl
values in the range [0, M - 1] and the second oG&sn

the range [M, 255].

Step 5: The stretching of V component is approved out
supported on two fuzzy membership values pDland, uD2
calculated for Cland C2 class of pixels correspugigli
Parameter M has the main role in the working outuagy
membership values; uD1 and uD2. Enhancement pagamet
K makes a decision the stretching intensity to date the
enhanced intensity values for the two classes C1 and C2.
Parameter K comes to a decision the stretchingt goin
which the intensity values x should be stretchesedaon
the membership valugs,, andy,,, .

Step 6: The replacement of the previous x values of the V
factor with the enhanced, Values will cause the V
component to be extended resulting in contrast and
brightness enhanced componEnt

Step 7: This enhanced achromatic informatign Can be
joint with the preserved chromatic in sequence (ldod
Saturation components) to obtain enhanced imag& HS
which is finally converted to enhanced RAmage.

Algorithm for fuzzy image enhancement
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for counter = 1:1ength(l ow)
for index =
| ow( count er): high(counter)
transformati onMap(i ndex) =
round( (l ow(counter)-1) +
(range(counter)*(sum(fH stogran(l ow
(counter):index)))/ (sunm(fHistogramn
| om counter): high(counter))))));
end
end

fuzzy factor_imge =
stretchlim(ip_imge, fuzzy factor);
final _image = inadjust (ip_i mge,
fuzzy factor_image, []);

Edge Preserving Filter

Median filtering has used as an edge preservingr filt
preserves edges while removing noigée have made use
of the two-dimensional median filter where two-
dimensional represents an array. It is useful eserving
edges in an image.

Fig.3: a)nlnput Image b) Modified Gray World withdge
preserving filtering

Modified Gray World (Saturation Weighting incorpted
with gray world) which reduces the impact of thghti but it
also reduces the sharpness of the image and maly ines

some noise so to remove this problem; we uses an

integrated effort of the modified Gray World color
constancy with an edge preserving filteridg.not only
removes noise but also preserves edgasdge preserving
filter is utilized to reduce the noiseShe edge-preserving
filter provides extensively noise reduction.

VI. RESULT AND DISCUSSION
Performance Evaluation
Quantitative performance measures are very impbitan
comparing different image enhancement algorithnmné&
well-known image performance parameters for digital
images have selected to prove that the performahtee
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proposed algorithm is quite better than the avhdlab
methods.

Performance is evaluated on the basis of variotenpeters
like MSE and RMSE. The values of the parameters are
taken in the tabular form consisting of four coliann
including image number, gray edge using first order
derivative, gray edge using second order derivatine
optimal method results.

Mean Square Error

Table 2 shows the quantized study of the mean scpraor.

As the mean square error needs to be reduced dhettie
algorithm is showing the better results than theilatle
techniques as mean square error is less in evee. dde
method is experienced on various images and in easé
shows the better results than the existing method.

Table.2: MSE Evaluation

Images Gray Gray | Proposed
Edge 1 | Edge 2 | Results
1. 0.0122 0.0110 0.0064
2. 0.0368 0.0307 0.0177
3. 0.0299 0.0287 0.0208
4. 0.0329 0.0283 0.0106
5. 0.0521 0.0469 0.0245
6 0.0550 0.0509 0.0283
7 0.0412 0.0374 0.0291
8 0.0080 0.0076 0.0050
9 0.0204 0.0194 0.0131
10. 0.0247 0.0224 0.0141

0.06

Input images.

Graph 1: MSE Evaluation
Root Mean Square Error
Table 3 is showing the relative analysis of thet no@an
square error. Table3 has evidently shown that a$ meean
square error is less in our case therefore theritligo has
shown better results over the available algorithm.
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Table.3: RMSE Evaluation

Images Gray Gray Proposed
Edge 1 | Edge 2 Results
1. 0.1105 0.105d 0.0803
2. 0.1919 | 0.1753 0.1330
3. 0.1729 | 0.1695 0.1441
4. 0.1814 | 0.1683 0.1028
5. 0.2281 | 0.2164 0.1564
6. 0.2346 | 0.2255 0.1683
7. 0.2030 | 0.1935 0.1707
8. 0.0892 | 0.0874 0.0749
9. 0.1429 0.1391 0.1146
10. 0.1573| 0.1497 0.1186

Graph 2 shows the quantized analysis of the Roanme
squared Error of different images. It is very cléam the
graph that there is decrease in RMSE value of imagth
the use of proposed method over existing method.
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rate(%)
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oy [ Ex
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1 2 3 4 5 6 T 8 9 10
Input images

Graph 2: RMSE Evaluation

Peak Signal to Noise Ratio

Table 4 shows the comparative analysis of the Fgikal

to Noise Ratio (PSNR). As PSNR need to be maximiged
the main goal is to increase the PSNR. Table Aclessly
shown that the PSNR is maximum in all the values;
therefore algorithm is providing better results nththe
available techniques. The method is tested on wario
images and in each case shows better results thean t
existing method.

Table.4: PSNR Evaluation

Images Gray Gray Proposed
Edge 1 Edge 2 Results
64.8019 67.7085 70.0371
62.4702 63.2560 65.6552
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3. 63.3729 63.5477 64.4637
4. 62.9601 63.6105 67.8928
5. 60.9665 61.4237 64.2464
6. 60.7252 61.0669 63.6075
7. 61.9805 62.3981 63.4861
8. 69.1239 69.3033 70.6386
9. 65.0285 65.2618 66.9445
10. 64.1981 64.6286 66.6473

Graph 3 shows the quantized study of the peak kigna
noise ratio of different images. It is clear fronetplot that
there is raise in the PSNR value of images withube of
method over existing methods. This increase reptesan
enhancement in the objective quality of the image.
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VIL. CONCLUSION
To conclude, the methodology in this paper has shtiw
extend the existing methods under that scenariaevtie
uniform light-source assumption is too restrictivi. this
paper, a new methodology that can be used to aybr
constancy for the images that are recorded in theepce
of different light sources has been proposed. S¢ver
traditional techniques such as Grey-world techniddax
RGB and learning-based technique were utilizedheck
the color constancy of digital images sufferingnfra light
source. Every one of these techniques has an dviden
drawback that the source of light throughout thenscis
spectrally same.
This assumption is usually violated as there cambkiple
source of light illuminating the scene. More focuisen
changing the saturation weighting based color eomst
using fuzzy membership based color image enhandemen
and edge preserving filtering.
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Graph 3: PSNR
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The issue appears to be justifiable and has gratte
vision application since as fuzzy membership based
saturation weighting that has decrease the imphdhe®
light but it additionally decreases the sharpnésheimage
and also has result in certain noise so to elireitias issue,
an integral effort of the edge based color constanc
combined with histogram stretching and edge présgrv
filtering.So the proposed methodology is considered
according to the following criterion: 1) it shoubed able to
compact with scenes containing single and multlfget
sources; 2) it should work on a single image; 3homan
interruption is required; 4) no prior knowledgetbé light
sources is required. This scenario proves helgfuirfdoor

as well as outdoor illuminants.

This paper work has not considered any soft comguti
technique for color constancy to check the optimigalue

of a light source for differently-illuminant imagealso the
effect of the noise is also ignored, therefore éamfuture,
some well-known image filters will use which depithe
light source for differently-illuminant images umnde
different scenario.
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