An Experimental Investigation and Comparative analysis on a Four Stroke CI Engine with two Straight Bio-Diesel Blends: Hazelnut and Palm

T. Krishnaiah¹, Dr. V. Pandurangadu², Dr. V. Nagaprasadanaiddudu³

¹M.Tech, (Ph.D) Department of Mechanical, Gates Institute of Technology, Gooty, Anantapur, Andhra Pradesh, India
²Ph.D, Professor in Department of Mechanical, Rector, JNTUA, Anantapuramu, Anantapur, Andhra Pradesh, India
³Professor in Department of Mechanical, Principal, Intell College of Engineering, Anantapur, Andhra Pradesh, India

Abstract—An experimental analysis was made to investigate two non edible oils (hazelnut and palm), blending with neat diesel fuel with the proportions of 5%, 10%, 15%, 20% and 25% by volume and used as fuel in a single cylinder, four stroke, water cooled, Compression Ignition engine. Experimental tests were conducted by using the above bio-diesel blends as fuel operated with the above mentioned engine working at various loads. Performance parameters and exhaust emissions of hazelnut and crambe bio-diesel blends are compared with the same results of diesel fuel. Performance parameters selected to analyze are Brake Thermal Efficiency (BTHE), Brake Specific Fuel Consumption (BSFC) and Exhaust Gas Temperature (EGT) and exhaust emissions selected to investigate are Carbon Monoxide emissions (CO), Oxides Of Nitrogen (NOx) and smoke density (SD). From the results of all blends used as fuel in the engine, it is clarified that CI engine showing better performance by using a hazelnut bio-diesel blend with proportions of 20% hazelnut bio-diesel and 80% normal diesel fuel. Traditional Engine with bio-diesels as fuel are showing acceptable reduction in emissions like hydro carbons and oxides of carbon but with marginal increase in oxides of nitrogen compared with diesel fuel. But BTHE of Bio-diesel blend is less than the BTHE of diesel fuel operating in the same engine. From all the blends Hazelnut bio-diesel blends are giving better performance parameters and decreased emission characteristics hazelnut oil having better properties immediately after diesel fuel when compared with remaining bio-diesel blends.

Keywords—Biodiesel, Emissions, Non-edible oils, Performance.

I. INTRODUCTION

Along with techniques related to the engine to meet emission regulations imposed [1–4], researchers of engine are also focusing their interest on the domain of fuel-related techniques, such as for example oxygenated fuels which are able to decrease particulate emissions [5–10] and alternative gaseous fuels that are renewable in nature. To develop the sources of alternate fuel, many countries of the world are stepping forward by paying considerable attention. Alternative fuels which are produced from the products of agriculture are reducing the oil imports in the world. They are also supporting agricultural industries, which increases the farming incomes despite of all these advantages they are also reducing the exhaust emissions. The bio fuels which are considered as most promising fuels are the fuels derived from vegetable oils, bio alcohols, and vegetable oils. Among all the industries in the world bio fuel production is one of the rapidly growing industries. In spark ignition engines bio-ethanol is the primary alternative to gasoline. Vegetable oil and their derived bio fuel as well as diesel fuel mixing with small proportions of ethanol are alternative fuel for compression ignition engines. Whereas other alternative fuels like bio-mass derived hydro-carbon fuel, bio-butanol and hydrogen are being research at present which are considered as alternative fuel for next generation.

Apart from renewability, bio-fuels are more advantageous than normal diesel in some aspects like they are having very less sulphur content and aromatic contents, higher lubricity, higher flash point, non-toxicity and higher biodegradability. On the other side the disadvantages of bio-fuels includes very high pour point, very high viscosity, the lower cetane number, lower volatility and lower calorific value. One of the great disadvantages of bio-fuel is its highly increased viscosity, which is approximately
The present experimental work studies and compares the engines with the use of bio-fuels blending with neat diesel without modifications. Experimental studies on the CI bio-fuels and vegetables are generally accepted as blends because of all the above reasons, maximum up to 25% of sump oil, thus requiring more frequent oil changes. They show increased dilution and polymerization of engine plastic materials used for seals, hoses, paints and coatings. The advantages of bio-diesels as diesel fuel, apart from renewability, are the minimal sulfur and aromatic content, the higher flash point, the higher lubricity, the higher cetane number, and the higher biodegradability and non-toxicity. On the other hand, their disadvantages include the higher viscosity (though much lower than the vegetable oils one), the higher pour point, the lower calorific value and the lower volatility. Furthermore, their oxidation stability is lower, they are hygroscopic, and as solvents they may cause corrosion of components, attacking some plastic materials used for seals, hoses, paints and coatings. They show increased dilution and polymerization of engine sump oil, thus requiring more frequent oil changes.

Because of all the above reasons, maximum up to 25% of bio-fuels and vegetables are generally accepted as blends with diesel fuel and can be used in existing diesel engines without modifications. Experimental studies on the CI engines with the use of bio-fuels blending with neat diesel have been reported.

The present experimental work studies and compares the above bio-fuels of various origins, in blending with ordinary diesel fuel, by fuelling a single cylinder, direct injection, naturally aspirated CI engines. A companion paper extended the present investigation for hazelnut oil and its methyl esters for different blend ratios, followed by another paper dealing with their heat release and stastical analysis using insulated combustion chamber of the same engine.

As mentioned above, the results of performance and emissions have been evaluated by this research work by using blends of neat diesel fuel with two bio-fuels (hazelnut and palm) [28], in the single-cylinder, water-cooled, direct injection, ‘Kirlosker’ diesel engine concerning the present work. The interpretation of the experimental measurements was based on the differences of properties between the fuels tested.

Most of the experimental works reported on the use of bio-fuels in the compression ignition engines are referred to mainly single-cylinder naturally aspirated engines have been used only one or two bio-fuel oils. But the present research work steps forward in reporting on the use of two bio-fuel oils on a single-cylinder, four stroke and water-cooled diesel engine. Widely differing chemical and physical properties of bio-fuels against those of diesel fuels, are combining with the theoretical aspects of diesel engine combustion, and are used to aid the correct interpretation of the observed engine emissions and performance wise behavior.

II. DESCRIPTION OF THE ENGINE TEST FACILITY

Facilities to monitor and control engine variables were installed on a test-bed, Kirloskar single cylinder, four stroke, vertical, water cooled, compression ignition engine (Fig. 1) was used and mounted on the ground. The test engine was directly coupled to an eddy current dynamometer with suitable switching and control facility for loading the engine. Engine specifications were as follows: bore & stroke, 87.5 mm x 110 mm; compression ratio, 17.5:1; speed, 1500 rpm; fuel timing, 27° by spill (btdc); clearance volume, 37.8 cc; and rated power, 5 hp.

For fuel consumption measurement a tank and flow metering system is used for various blend samples as follows. A piezometer of known volume was used with the measurement of time for the complete evacuation of the sample fuel which is feeding to the engine. In order to have a quick drain of a fuel sample, including the return fuel from injector and pump and refilling of fuel metering system with new fuel sample a system is provided with valves and pipes.

A system which is used for the measurement of exhaust gases consists of group of analyzers for measuring carbon monoxide (CO), oxides of nitrogen (NOx), hydrocarbons (HC), smoke density (SD), particulate and soot. The concentration of CO (in ppm) present in the exhaust gases was measured by using ‘Signal’ Series-7200 non-dispersive infrared analyzer (NDIR) equipped with a ‘Signal’ Series-2505M Cooler. ‘Bosch’ RTT-100 opacimeter, is used to measure the smoke level in the exhaust gas the readings of which are provided as equivalent smoke density in (mg of soot/ m³ of exhaust gases). The concentration of nitrogen oxides in ppm (parts per million, by vol.) present in the exhaust gases was measured by using ‘Signal’ Series-4000 chemiluminescent analyzer (CLA) that was fitted with a thermostatically controlled heated line. The total unburned hydrocarbons concentration (in ppm) present in the exhaust gases
gases was measured with a ‘Ratfisch-Instruments’ Series RS55 flame-ionization detector (FID) that was also fitted with a thermostatically controlled heated line.

![Fig.1: Experimental Setup](image)

Table.1: Engine Specifications And Injection System Basic Data.

<table>
<thead>
<tr>
<th>Engine model and type</th>
<th>Kirlosker single-cylinder, four-stroke, compression ignition, direct injection, water-cooled.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>1500 rpm</td>
</tr>
<tr>
<td>Engine total displacement</td>
<td>661 cm³</td>
</tr>
<tr>
<td>Bore/stroke</td>
<td>87.5 mm/110 mm</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>17.5:1</td>
</tr>
<tr>
<td>Maximum power</td>
<td>5.2 HP @ 1500 rpm</td>
</tr>
<tr>
<td>Maximum torque</td>
<td>29.0376 Nm @1500rpm</td>
</tr>
<tr>
<td>opening pressure</td>
<td>250 bar</td>
</tr>
</tbody>
</table>

III. PROPERTIES OF FUELS TESTED

Two typical types of straight Bio-diesel oils, viz. safflower, crambe, corn, hazelnut, and palm oil are tested as supplements of the normal diesel fuel, at blend ratios of 05/95%, 10/90%, 15/85% and 20/80% 25/75% (by vol.) with the conventional diesel fuel.

Diesel fuels which contains very less amount of sulphur content approximately (0.035 wt %) forms the base line for present study. To reduce the viscosity of bio-fuels they are to be de-gummed and refined, nearly the edible type without any pre-heating and adding any additives. All important properties of two bio-fuels and diesel are provided in table-2. All the values mentioned in the table are the mean values taken from various sites and references mentioned with this paper. In this study it required to note that the cetane number and kinematic viscosity values mentioned are not used computationally. In order to explain qualitatively the relative performance and emissions behavior of different fuel blends they are only referred to for indicative purposes.

Table.2: Fuel Properties.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Density at 15°c. Kg/mm³</th>
<th>Kinematic viscosity at 40°c. cST</th>
<th>Calorific value. MJ/kg</th>
<th>Flash point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>837</td>
<td>1.3</td>
<td>42.70</td>
<td>369</td>
</tr>
<tr>
<td>Hazelnut</td>
<td>875</td>
<td>3.59</td>
<td>42.12</td>
<td>425</td>
</tr>
<tr>
<td>Palm</td>
<td>867</td>
<td>3.94</td>
<td>41.24</td>
<td>434</td>
</tr>
</tbody>
</table>

Table.3: Accuracy of Measurements and Uncertainty Of Computed Results.

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>±5 ppm</td>
</tr>
<tr>
<td>HC</td>
<td>±0.5 ppm</td>
</tr>
<tr>
<td>CO</td>
<td>±0.2%</td>
</tr>
<tr>
<td>Smoke opacity</td>
<td>±0.1%</td>
</tr>
<tr>
<td>Speed</td>
<td>±5rpm</td>
</tr>
<tr>
<td>Specific fuel consumption</td>
<td>±1.5</td>
</tr>
<tr>
<td>Time</td>
<td>±5%</td>
</tr>
<tr>
<td>Torque</td>
<td>±0.5 Nm</td>
</tr>
<tr>
<td>Fuel volumetric rat</td>
<td>±1</td>
</tr>
<tr>
<td>Power</td>
<td>±1</td>
</tr>
</tbody>
</table>

IV. EXPERIMENTAL SECTION, TRANSESTERIFICATION PROCESS

To reduce viscosity of vegetable oils, transesterification method is adopted for preparation of biodiesel. In this process, non-edible oil (1000 ml) was taken in a three way flask. In a beaker, sodium hydroxide (NaOH, 12 g) and methanol (CH₃OH, 200 ml) were thoroughly mixed until it is properly dissolved. The solution obtained was mixed with non-edible oil in three way flask and stirred properly. Methoxide solution with non-edible oil was heated to 60°C and continuously stirred at constant rate for 1 h. The solution is poured down in a separate beaker and is allowed to settle for 4 h. Glycerin settles at the bottom and methyl ester floats at the top (coarse biodiesel). Methyl ester is separated, heated above 100°C and maintained.
for 10-15 min to remove untreated methanol. Certain impurities like NaOH etc. are still dissolved in the obtained coarse biodiesel. These impurities are cleaned up by washing with 350 ml of water for 1000 ml of coarse biodiesel. Cleaned biodiesel is methyl ester of non-edible oil.

V. PARAMETERS TESTED AND EXPERIMENTAL PROCEDURE

Engine testing was done in a laboratory at a constant temperature. Engine was started and warmed-up at low idle, long enough to establish the recommended oil pressure, and was checked for any fuel, oil leaks. After completing warm-up procedure, engine was run on no-load condition and speed was adjusted to 1800 rpm by adjusting fuel injection pump. Engine was run to gain uniform speed, after which it was gradually loaded. Experiments were conducted at different levels of load. For each load condition, engine was run at a minimum of 10 min and data were collected during the last 4-min of operation. Simultaneously, engine exhaust emissions were also determined.

The series of tests are conducted using each of the above mentioned blends, with the engine working at speed of 1500 and at different torque mentioned above. Because of the differences in oxygen content and calorific values of different fuels tested, the analysis is effected at the same engine brake power and not the air fuel ratio or same injected fuel mass.

In each test exhaust smokiness, volumetric fuel consumption rate, and exhaust gas emissions such as carbon monoxide, nitrogen oxides, and total unburned hydrocarbons are measured. From the first measurement brake thermal efficiency (BTHE.) and brake specific fuel consumption (b.s.f.c.) are computed using the fuel sample density and lower calorific value. Table 3 shows the uncertainty of the computed results of various parameters and the accuracy of the measurements.

The analysis of experimental work was started with a preliminary investigation of the compression ignition engine fueled with neat diesel fuel, to find out the exhaust emission levels and engine operating characteristics which constitute a base line which can be used to compare with the corresponding cases when using each of the blends forming with the combination of neat diesel and bio-fuel with appropriate proportions. By keeping the same operating conditions the same procedure was repeated for each fuel blend. For every time when the fuel is changed, the lines through which fuel flows were cleaned and then the engine is allowed to run for about 30 minutes to reach and stabilize its new desired conditions.

VI. RESULTS AND DISCUSSION

Investigation on the engine was made with different biodiesel blends as fuels and time for 10 cc fuel consumption was calculated. Among two biodiesels, along with its blends Hazelnut biodiesel is showing lesser viscosity than other oils at various temperatures (Fig. 2), may be due lower density of hazelnut biodiesel than others.

A. Brake Thermal Efficiency (BTHE)

Fig. 2 shows, the brake thermal efficiency (BTHE.) for the conventional diesel fuel, and 20% blends of the hazelnut and palm bio-diesel blends with diesel fuel, at various loads. BTHE of diesel is maximum compared with all biodiesels blends at diesel fuel, at various loads. BTHE trend at 20% blend of biodiesel is as H20 > P20. For other blends, trend is similar to that for 20% bio - blend. As load increases, BTHE too increases, may be due availability of oxygen which helps in complete combustion of the fuel.

B. Hydrocarbon (Hc) Emissions

HC emission of diesel is maximum compared with biodiesel blends at various loads tested (Fig. 3). Among biodiesels, Hazelnut showed minimum HC emissions than other oils. HC emissions trend at 20% blend of biodiesel is as H20 > P20, may be because all biodiesels contain oxygen, which favors better combustion when compared with diesel. Hence, HC emissions are very less for biodiesel. For other blends, trend is similar to that for 20% blend, as load increases, HC emissions increases.
C. NOx Emissions

Fig. 4 shows, the emissions nitrogen oxides (NOx) in ppm for the neat diesel fuel, and 20% blends of the two bio-fuel oils with diesel fuel, at different loads. It is observed that the NOx emission by all bio-diesel blends are higher than corresponding diesel fuel. The lower cetane number of bio-diesels blends (higher ignition delay) may play a role in this increase, apart from the delicate distribution of the fuel–air ‘packets’ inside the sprays as influenced by the fuel bound oxygen. Out of all biodiesels blends Hazelnut bio-diesel blend is showing minimum NOx emissions than other oils. NOx emissions trend at 20% blend of biodiesel is as H20 > P20, may be due to the low cetane number of biodiesel, which lead to ignition lag and causes to accumulate large amount of unburned mixture of air and bio-fuel. This accumulated charge after reaching the self ignition condition will burn at a time causes better combustion than diesel. As a result, the adiabatic flame temperature or maximum temperature inside cylinder is more in case of biodiesels than diesel. Hence, this catalyzes reactions for oxidation of nitrogen and hence NOX emissions are more for biodiesels. For other blends, trend is similar to that for 20% blend. As load increases, NOx emission increases. However, emissions are less when compared with 20% blend.

D. Co Emissions

Fig. 5 shows CO emission of diesel is maximum compared with biodiesel blends at various loads tested (Fig. 3). Among biodiesels, Hazelnut showed minimum CO emissions than other oils. CO emissions trend at 20% blend of biodiesel is as H20 > P20, may be because all biodiesels contain oxygen which favors better combustion when compared with diesel. Hence, CO emissions are very less for biodiesel. For other blends, trend is similar to that for 20% blend, as load increases, CO emissions increases.

E. Smoke Density
Fig. 6 shows the smoke density for the neat diesel fuel, and 20% blends of the four vegetable oils with diesel fuel, at different loads. One can observe that the density of all bio-fuel blends is higher than the ones for the corresponding neat diesel fuel.

F. Brake Specific Fuel Consumption

Fig. 7 shows the brake specific fuel consumption (b.s.f.c.) expressed in kg/kW h (kilograms per kilowatt and hour) for the neat diesel fuel, and blends of 20% of two bio-fuels and neat diesel fuel at different loads. The mass flow rate of fuel blend is calculated from the respective volume flow rate value which is measured and the density of the fuel blends which is computed by considering the densities of the fuel using and the ratio of fuel blends involved in the experimental work. Since the evaluation of work is made on the constant speed and same load which is translated in to the same engine power, and these values are proportional to the mass flow rate of fuel. It is to be observed that the air mass flow rate remains same under the same operating conditions.

G. Exhaust Gas Temperatures

Exhaust gas temperature (EGT) varied with load and the results for different fuels are presented in Figure 8. EGT of all the tested fuels increased with load. EGT of B20 was higher than that of diesel fuel at the highest load due to the blends’ higher viscosities, which resulted in poorer atomization, poorer evaporation, and extended combustion during the exhaust stroke. As the amount of bio-fuel content increases (B20, B25) then viscosity also increases, and, as a result, EGT of the blends was higher than that of diesel fuel due to deterioration in combustion and more fuel being oxidized.
VII. SUMMARY AND CONCLUSIONS
An experimental investigation is conducted to evaluate and compare the performance and exhaust emission levels of two different bio-fuels viz. Hazelnut and palm as supplements in the diesel fuel at blend ratios of 20/80 (by vol.), in a fully instrumented, single-cylinder, four stroke single cylinder direct injection, diesel engine. A series of tests have been performed by using the above each of fuel blends, providing the engine working at different loads. In each test, exhaust gas, exhaust smokiness, temperatures and exhaust regulated gas emissions such as carbon monoxide (CO), nitrogen oxides (NOx) and total unburned hydrocarbons (HC) are analyzed. Brake thermal efficiency and brake specific fuel consumption were computed from measured fuel volumetric flow rate and calorific values.

The exhaust smoke density was increased by the use of bio-diesel blends as fuel when compare with neat diesel fuel, hazelnut bio-diesel blends are performing better when compared with remaining all bio-fuels blends prepared from hazelnut and crambe. There is a marginal increase in NOx emission with the use of hazelnut bio-diesel blend and crambe bio-diesel blend as a fuel when compare with the NOx emission released from the engine with conventional diesel as fuel. Out of all bio-fuels prepared in the present study hazelnut bio-diesel blend HB20 is giving lower as compared with remaining blends.

The CO emissions were decreased noticeably with the use of bio-diesel blends as fuel in conventional engine when compare with CO emission from the same engine with diesel as, this is also decreasing as the percentage of bio-diesel increase in the blend.

The HC emissions were decreased noticeably with the use of bio-diesel blends as fuel in conventional engine when compare with HC emission from the same engine with diesel as, this is also decreasing as the percentage of bio-diesel increase in the blend.

Brake Thermal efficiency of an engine operated with diesel is showing marginal decrease in BTHE when compared with BTHE from the same engine but with conventional diesel as fuel.

REFERENCES

[37] Agarwal D, Agarwal AK. Performance and emissions characteristics of Jatropha oil (preheated and blends)

