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Abstract—In this paper we consider prime graph of R 
(denoted by ( )P G R ) of an associative ring R 

(introduced by Satyanarayana, Syam Prasad and 
Nagaraju [6]). This short paper is divided into two 
Sections. Section-1 is devoted for preliminary definitions. 
In section-2, we constructed Left zero divisor graph of R 

(denoted by LZDG(R)) where R = the set of all 2 2×   
matrices over the ring 

2Z of integers modulo 2.   
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I.  INTRODUCTION 
Let G = (V, E) be a graph consist of a finite non-empty 
set V of vertices and finite set E of edges such that each 
edge ek is identified as an unordered pair of vertices {vi, 

vj}, where ,i jv v  are called end points of ek . The edge ek is 

also denoted by either i jv v
 
or i jv v .  We also write 

( ),G V E for the graph.  Vertex set and edge set of G are 

also denoted by ( )V G  and ( )E G respectively.  An edge 

associated with a vertex pair {vi, vi} is called a self-loop.  
The number of edges associated with the vertex is the 

degree of the vertex, and δ(v) denotes the degree of the 
vertex v.  If there is more than one edge associated with a 
given pair of vertices, then these edges are called parallel 
edges or multiple edges.  A graph that does not have self-
loop or parallel edges is called a simple graph.  We 
consider simple graphs only.  For an associative ring R, 

prime graph of R (denoted by ( )PG R ) was introduced 

in Satyanarayana, Syam Prasad and Nagaraju [6]. In this 
paper the concepts: left zero divisor graph was defined 
and compared with prime the graph.  
1.1 Definitions: (i) A graph G (V, E) is said to be a star 
graph if there exists a fixed vertex v such that E = {vu / u 

∈ V and u ≠ v}.  A star graph is said to be an n-star graph 
if the number of vertices of the graph is n. 
 
(ii) (Satyanarayana, Syam Prasad and Nagaraju [6]) Let R 
be an associative ring. A graph      G (V, E) is said to be a 
prime graph of R (denoted by PG(R)) if V = R and  E = {

xy  /  xRy = 0 or yRx  = 0, and x ≠  y}. 

(iii) In a graph G, a subset S of V(G) is said to be a 
dominating set if every vertex not in S has a neighbour in 

S.  The domination number, denoted by γ(G) is defined 
as min {|S| / S is a dominating set in G}.  
(iv) Let �1,2,3, … , �� be n objects to be permuted.  For 
two permutations a1, a2,  …,   an, and b1, b2,  …,   bn, we say 
that a1, a2,  …,   an comes before b1, b2,  …,   bn in the 
lexicographic order, if some 1 ≤ 
 < �, �
�  �
, 
���  ��,…, ���
 =  ���
 , and  �� <  �� . 
(v) In a connected graph, a closed walk running through 
every vertex of G exactly once (except the starting vertex 
at which the walk terminates) is called as Hamiltonian 
circuit.  A graph containing a Hamiltonian circuit is 
called as Hamiltonian graph.  
(vi) Definition:  A graph  ( )EVG ,=  is said to be the 

zero divisor graph of R if  RV =  and      E =

{ }/ , , , 0 , 0xy x y x y R x y xy≠ ∈ ≠ ≠ =

{ }0 / 0x x R∪ ≠ ∈  where xy denotes an edge 

betweenx, y V∈ . 

1.2 Note: (i) This definition ‘zero divisor graph’ is same 
as that of Beck [1988] in case of commutative rings. 
1.3 Theorem:  (Th. 13.8, page 361, [3]) A given 
connected graph G is an Eulerian graph if and only if all 
the vertices of G are of even degree.  
     
For other fundamental concepts we refer [2], [3], [4] or 
[5] 
  In this paper, we use the following notation. 
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                  In this paper we consider totally ordered finite 

rings, the elements of a ring R with 1R n= + were 

totally ordered.  Without loss of generality, we assume 

that { }0 1, ,..., nR v v v= and the elements of R were 

totally ordered with i jv v< if i j< . 

 
II.  LEFT ZERO DIVISOR GRAPHS 

2.1 Definition: We define the left zero divisor graph of R (denoted by LZDG(R)), as follows; 

( )( ) { }/ 0iV LZDG R R v i n= = ≤ ≤ , and ( )( ) { }i j i jv v / v v = 0 with i < jE LZDG R = .                

2.2 Note: In case of commutative rings, LZDG(R) = ZDG(R).  

2.3 Notation: Consider the matrix
a b

c d

 
 
 

 and let us identify it with   the 4-tuple ( ), , ,a b c d with �, �, �, � ∈ ℤ�.  

Lexicographic order on these 4–tuples is as follows:

 ( ) ( ) ( )0,0,0,0 0,0,0,1 0,0,1,0≤ ≤ ( ) ( )0,0,1,1 0,1,0,0≤ ≤ ( ) ( ) ( )0,1,0,1 0,1,1,0 0,1,1,1≤ ≤ ≤

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
 Let us carry this lexicographic order to the 2 2×  matrices, Then we have the following order: 

 
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1

               
≤ ≤ ≤ ≤ ≤ ≤ ≤               

               

1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1

0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1

               
≤ ≤ ≤ ≤ ≤ ≤ ≤               

               
 

Write �� = �0 0
0 0�, �
 = �0 0

0 1� , �� = �0 0
1 0�, �� = �0 0

1 1�, �� = �0 1
0 0�, � = �0 1

0 1� 

6 7 8 9 10 11

0 1 0 1 1 0 1 0 1 0 1 0
, , , , , ,

1 0 1 1 0 0 0 1 1 0 1 1
v v v v v v

           
= = = = = =           
           

�
� = �1 1
0 0�, 

�
� = �1 1
0 1�, �
� = �1 1

1 0�, �
 = �1 1
1 1�.                  Then 

{ }/ 0 15iR v i= ≤ ≤ is an ordered ring with 16 elements and

 
0 1 15...v v v≤ ≤ ≤ (In other words i jv v<  if i j<  for 

0 , 15i j≤ ≤ ,

 2.4 Construction:  In the following, we construct left zero divisor graph LZDG(R) of this ring R: 

( ) { }( ) / 0 15iV LZDG R R v i= = ≤ ≤ .  

Since 0 0iv v = for all 1 15i≤ ≤ we have that  ( )( )0 iv v E LZDG R∈ for 1 15i≤ ≤ . 

 Also 1 2 1 4 1 8 0v v v v v v= = = and 0i jv v ≠ for { }0,2,4,8i ∉ ,

2 3 3 5 3 10 3 15 4 8 4 12 5 8 5 12 12 15 0v v v v v v v v v v v v v v v v v v= = = = = = = = = . 

 Therefore, ( )( )E LZDG R = 
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15

1 2 1 4 1 8 2 3 3 5 3 10 3 15 4 8 4 12 5 8 5 12 12 15

, , , , , , , , , , , , , , ,

, , , , , , , , , , ,

v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v

v v v v v v v v v v v v v v v v v v v v v v v v

  
 
  

.   
The graph LZDG(R) is given in Figure 2.4.  
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2.5 Note: (i) (R, E1) where is a 16 – star graph which is also a subgraph of LZDG(R). 

 (ii) The Domination number of LZDG(R) is 1.  

(iii) Since forms a triangle, we conclude that the graph cannot be a bipartite graph         

(iv) LZDG(R) is not an Eulerian graph (by using the Th. 13.8, p 361 of [4]).                                                            
 (v) Since LZDG(R) contains pendent vertices, it contains no Hamiltonian circuit.                                                                                                                                             

(vi)  In general ( ) ( )( )LZD(R) PG(R) .E E⊄  To see this, Consider the construction 2.4.  

    Since 1 3 4 1 40 v v v v Rv≠ ∈  and 4 1 1 4 10 v v v v Rv≠ ∈ , we conclude that there is no edge between   1v and 4v  in PG(R).  

But ( )( )
1 4v v E LZDG R∈ (Refer: construction 2.4).                  

So ( )( ) ( )( )
1 4 \v v E LZDG R E PG R∈ .  Hence ( ) ( )( )LZD(R) PG(R) .E E⊄   
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