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Abstract— In this paper, Laplace Transform method is 
developed to solve partial Integro-differential equations. 
Partial Integro-differential equations (PIDE) occur 
naturally in various fields of science. Engineering and 
Social Science. We propose a max general form of linear 
PIDE with a convolution Kernal. We convert the 
proposed PIDE to an ordinary differential equation 
(ODE) using the LT method. We applying inverse LT as 
exact solution of the problems obtained. It is observed 
that the LT is a simple and reliable technique for solving 
such equations. The proposed model illustrated by 
numerical examples.  
Keywords—Partial Integro-differential equations 
convolution Kernal, Laplace Transform. 

I.  INTRODUCTION 
In this paper, we study the partial Integro-differential 
equation under the most general Laplace Transform 
method (LT) for linear term with a convolution kernel. 
Due to local nature of Ordinary differential operator, the 
models containing merely ODOs do not useful in 
modeling memory. One of the best remedies to overcome 
this risk factor is inclusion of the integral term in the 
model. The ODE and PDE along with the weighted 
integral of unknown function gives rise to an integro-
differential equation or a partial integro-differential 
equation. Applications of PIDE can be found in various 
fields. Various numerical schemes are proposed by 
Dehghan [4] to solve PIDEs arising in viscosity. Appell 
[2] proposed a Partial Integro Operators and integro-
differential equations. Non-linear PIDEs arising in 
nuclear reactor dynamics are solved by Pachapatte [3] on 
some new integral and integro-differential inequalities in 
two independent variables and their application and 
PIDEs have been used in jump-diffusion models for 
pricing of derivatives in finance and management. 
Abeerge [1] A Non-linear partial-integro-differential 
equations used a non-linear PIDE in financial modeling. 
The numerical technique basically illustrates how the 
Laplace Transform can be used to approximate the 
solution of the non-linear differential equation by 
manipulating the decomposition method which was first 

introduced by Schiff [6], the Laplace Transform Theory 
and applications. The most valuable method for solving 
linear equation is the Laplace Transform technique. Also 
LT is used in for calculations of water flow, wave 
equations, electronic circuit problems and heat transfer in 
fractured rocks. Merdon et al [7] proposed a revised 
method for non-linear oscillatory systems using LT. 
In this paper we applied Laplace Transform technique of 
a linear PIDE under the convolution of two functions. We 
construct our method to approximate the solution PIDE. 
In section two we introduce necessary definitions of LT. 
In section 3, we developed the proposed method. 
Examples are given in section 4. 
 

II.  BASIC DEFINITIONS   
2.1 Laplace Transform 
Let f(t) be a real valued continuous function defined for 0 
≤ t < ∞. Suppose that for a real (or) complex parameter s, 

the integral 0

ste
∞

−
∫

 f(t) exist. Then the integral 
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0

st
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∞ −
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is called Laplace Transform 
of f(t).  
2.2 Sufficient conditions 
L[f(t)] exists for s < ∞, if  
(i) f(t) is piece wise continuous on every finite 
interval in the range  t ≥ 0 
(ii)  f(t) is of exponential order. 
The above conditions are sufficient but not necessary. 
 
2.3 LT of periodic function 
If f(t) is a periodic function with period T then 
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−
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2.4 Convolution Theorem 
Let f(t) and g(t) be two functions, L[f(t)] = F(s);  L[g(t)] = 
G(s)  then  

L-1[F(s) G(s)] = f(t) x g(t)  = 
( ) ( )

0

t
f u g t u du−∫
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III.  SOLUTION PROCEDURE OF PIDE 
Consider PIDE, 
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Where f(x,t) and Ki (t,s) are known functions. Ai’s, Bi's 
and C are constants or the functions of x. 
Operating Laplace Transform on both sides of (1) 
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Using convolution Theorem for LT, we get, 
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where [ ]( , ) ( , )u t s L u x t=
 

equation (2) is an ordinary differential equation in 

( , )u t s . 
Solving this ODE and Operating Inverse Laplace 

Transform of ( , )u x s  we get a solution u (x, t) of (1). 
 

IV.  ILLUSTRATIVE EXAMPLES 
4.1 Consider the PIDE 

2
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∂ ∂                 (3) 
With initial condition  
y(x,0)  = e-x,  yi (x,0)  = 0                (4) 
 and boundary condition 
  y(0,t)  =  Sin t                (5) 
Operating Laplace Transform w, r.t ‘t’ on (3), 
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This is a linear differential equation in ( )y u . The general 

solution of y is  

Integrating factor = 

2
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Applying the boundary conditions  

 

1
  (0, )  = 2

1
y s
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   (8) 
Using (7) and (8) we get  C = 0 
Eq (7) become, 

1
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Operating inverse Laplace Transform on (9), 
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⇒  y(x,t)   = ex Sin t 
 
4.2 Example 
Consider the PIDE 
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With the initial conditions, 
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Now, Operating Laplace Transform of (10) w.r.t. ‘t’. 
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This is ODE in y  

The auxiliary equation is 
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Using above and solving we get, 
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Applying conditions of (11), (12), 
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Using (14), (15) in (13) we get   
 A + B  = 0          (16) 
 A – B = 0           (17) 
Solving (16), (17) we get  A = 0 = B 
 
Equation (13) becomes, 
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    = x2 – t 
Solution in y(x, t)    =  x2 – t  is an exact solution. 
 
4.3 Example consider the PIDE 
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Operating Laplace Transform on (18) w.r.t. ‘t’ and using 
the condition (19) we get, 
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The auxiliary equation is, 
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Solving (21) we get, 
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Using (20) we get, 
 A = 0;  B = 0;  C = 0 
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This is an exact solution. 
 

V. CONCLUSIONS 
In this article, we proposed most general linear Partial 
Integro-Differential Equations in modelling different 
applications in Engineering Problems such as wave 
equation, heat transfer equations under Laplace 
Transform technique. In LT, we used convolution Kernal 
theorem for finding exact solutions of 3 different 
examples. 
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