International Journal of Advanced Engineering, Margement and Science (IJAEMS)

Infogain Publication (L nfogainpublication.com)

[Wallssue-7, July- 2016]
ISS 2454-1311

An Analysisand New M ethodology for Reverse
Engineering of UML Behavioral

Chafik Baidada, El Mahi Bouziane, Abdeslam Jakimi

Software Engineering & Engineering of Informatioys&ms Group, Computer Sciences Department, Mdstagil University,
FST Errachidia, Morocco

Abstract— The emergence of Unified Modeling Language
(UML) as a standard for modeling systems has encouraged the
use of automated software tools that facilitate the devel opment
process from analysis through coding. Reverse Engineering
has become a viable method to measure an existing system
and reconstruct the necessary model from its original. The
Reverse Engineering of behavioral models consists in
extracting high-level models that help understand the behavior
of existing software systems. In this paper we present an
ongoing work on extracting UML diagrams from object-
oriented programming languages. we propose an approach
for the reverse engineering of UML behavior fromthe analysis
of execution traces produced dynamically by an object-
oriented application using formal and semi-formal techniques
for modeling the dynamic behavior of a system. Our methods
show that this approach can produce UML behavioral
diagrams in reasonable time and suggest that these diagrams
are helpful in understanding the behavior of the underlying
application.

Keywords— Reverse Engineering,
diagrams; Execution traces.

UML,

[. INTRODUCTION
Recently, software is becoming
Traditional software engineering research and dgreént
focuses on increasing the productivity and qualitysystems
under development or being planned. Without dinhiinig the
importance of software engineering activities faegson
initial design and development, empirical evidemscggests
that significant resources are devoted to rever#iegeffects
of poorly designed or neglected software systems perfect
world, all software systems, past and present, avoud
developed and maintained with the benefit of welkstured
software engineering guidelines. In the realityngaystems
are not or have had their structured design negafbe
understanding of these programs is an essential @far
maintenance, reuse, validation and other activitiesoftware
engineering. An important part of maintenance tis@ften

WWW.ijaems.com

devoted to reading the code to understand theiuradity of
the program. According to some studies, up to 63%he
maintenance is devoted to understanding the sadtjtdr
Therefore, it is important to develop tools anchtéques that
facilitate the task of understanding such systeetsabbse the
documentation is often absent, outdated or incor@plén
effective recognition technique to understand surcigrams is
reverse engineering. In the world of object-orientearget
language most used for reverse engineering is UMId{ie to
its significant presence in the industry.

The remainder of this paper is organized as follolusthe
next section, we present a general idea of the BNt reverse
engineering relevant to this work. Section 3 presid
background about various approaches to implement. UM
behavior. In section 4, we explain our research hotet
Section 5 gives result and discussion of approketally, in
section 6, we summarize and conclude.

[I. UML AND REVERSE ENGINEERING

Behavior A. Objectives of Reverse Engineering

The primary purpose of reverse engineering a so&wsgstem
is to increase the overall comprehensibility of #ystem for
both maintenance and new development. When wedry t

increasingly complexharacterize reverse engineering in terms of iteaives,

there are six key objectives [3].

1. Cope with complexityWe must develop method to better
deal with the share volume and complexity of thetesy.

A key to controlling these attributes is automatagport.
Reverse Engineering methods and tools, combineld wit
case environments, will provide a way to extratéwant
information so decision makers can control the gssc
and the product in the system.

Generate alternate viewsGraphical representation has
long accepted as comprehension aids. However,ingeat
and maintaining them continuous to be a bottlenedhke
process. Reverse-engineering tools facilitate the
generation or regeneration of graphical represiemat
from other forms. While many designers work from a

2.

Page | 1012

International Journal of Advanced Engineering, Margement and Science (IJAEMS)

Infogain Publication (L nfogainpublication.com)

[Wallssue-7, July- 2016]
ISS 2454-1311

single, primary perspective (like dataflow diagrams

reverse-engineering tools can generate additioredsy
from other
structure chart, and entity relationship diagratosid the
review and verification process.

Recover lost information The continuing evolution of
large, long —lived systems leads to lost informatidoout

UML 2.2 has 14 types of diagrams divided into two
categories:

perspective (like control flow diagram,l. Sructure Diagrams. These diagrams emphasize the things

that must be present in the system being modelede S
they represent the structure, they are used extdnsin
documenting the software architecture of software
systems.

the system design. Modifications are frequently na?. Behavior Diagrams. These diagrams emphasize what must

reflected in the documentation, particularly at igher
level than the code itself. While it is no subggtdor
preserving design history in the first place, reeer

happen in the system being modeled. Since thestrifite
the behavior of a system, they are used extensiwely
describe the functionality of software systems.

engineering — particularly design recovery is oaywo Object oriented analysis and design methods offejoad
salvage whatever we can form the existing system. framework for behavior. In this work, we adoptea ML,
Detect side effectBoth haphazard initial design andwhich is a unified notation for object oriented ses and
successive modification can lead to unintendedesign.

ramification and side effects that impede a syS$s&emUML is a good target language for the reverse ergging of
performance in subtle ways. models since it is largely used and offers differdiagrams.
Synthesize higher abstraction Reverse-engineering The reverse-engineering of UML static diagramske Itlass
requires methods and techniques for creating a@tern diagrams — has been studied and is now implememted
views that transcend to higher abstraction levEtere is several tools. Static views of the system allowieeers to
a debate in the software community as to how cotalgle understand its structure but it does not show tgabior of

process can be automated. Clearly,
technology will play a major role in achieving tfial
potential of generating high-level abstraction.

toward software reusability is the large body ofsérg

expert-systeime software. To fully understand its behavior, awc

models are needed, such as sequence diagramsechstss.
C. Reverse Engineering of UML

Facilitate reuse A significant issue in the movementReverse engineering is the process of analyzingitjest

system to identify the system’s components and rthei

software assets. Reverse- engineering can helpctdetmterrelationships and create representations efstfstem in

candidates for reusable software components fraasemt
system

B. UML Behavioral
UML is a standardized general-purpose modelinguagg in
the field of object-oriented software engineeringML
includes a set of graphic notation techniques &ater visual
models of object-oriented software systems. UML boves
techniques from data modeling, business modelirigecod
modeling,
throughout the software development life-cycle aamtoss
different implementation technologies.
represent two different views of a system model:

1. Static (or structural) view: This view emphasizke static
structure of the system using objects, attribugpsrations,
and relationships. Ex: Class diagram, Compositecgtre
diagram.

2. Dynamic (or behavioral) view: This view emphasithe
dynamic behavior of the system by showing collationa
among objects and changes to the internal statelsjetts.
Ex: Sequence diagram, Activity diagram, State Maehi
diagram.

WWW.ijaems.com

another form or at higher levels of abstraction [REverse
engineering is needed when the process to unddrsaan
software system would take a long time due to irestiy out
of date documentation, complexity of the system dnel
insufficient knowledge of the maintainer of the teys.
Reverse Engineering is used to recover lost inftionato
improve or provide documentation, to detect sideat$, to
reuse the components and to reduce the mainteefioce

and component modeling and can be usébwadays, UML is the most adopted modeling language

system design in the software engineering orgapizatand

UML diagramsndustry. The main reasons are: (i) its friendlyd antuitive

notations, (ii) availability of commercial and opgource tools
that support the UML notations and (iii) autonomy o
particular programming languages and developmertgsses.
This technique is widely used in several discigimecluding
new technologies such as mechanics, electronias, lat
computer science, Reverse engineering dynamic reasdb
convert the code to models such as UML sequenagatia
state diagram, etc, the goal is to increase thel|ef
abstraction to better understand the behavior ffvace.
Reverse engineering dynamic UML models is a vefigiefit
way to understand complex software whose source d¢ed

Page | 1013

International Journal of Advanced Engineering, Margement and Science (IJAEMS)

Infogain Publication (L nfogainpublication.com)

[Wallssue-7, July- 2016]
ISS 2454-1311

absent or documentation is outdated. It is alsd useoftware
engineering activities such as testing and valati

In this paper, we consider UML diagrams as targegigh

models for reverse-engineering. This means th&ows only

on reverse-engineering of UML diagrams (i.e. thecpss that

IV. RESEARCH METHOD
The reverse engineering of behavioral models ctasis
extracting high-level models that help understdrelliehavior
of existing software systems. Our approach for n&ve
engineering of UML behavior diagrams is defined faur

analyzes the execution of the system and created UNhain steps (Fig 1.): (i) traces generation, (igces collection

diagrams that depicting its structure and its bairavUML is

an object-oriented language for software systematiogl It

is composed of a set of diagrams which allow spéwifthe
several aspects of a system. The two main aspeetstatic
(structural diagrams) and behavior (dynamic) aspethe
static aspect of system can be specified usingsclas
component diagrams, while the behavior aspect can
specified using sequence diagrams, state machimeadivity
diagrams...etc.

In the earlier approaches, reverse engineering lgéco
oriented code resulted in generation of class diagr
interaction diagrams and use case model in geridoalever
they represent only the static nature of the obganted
systems.

and filtering, (iii) traces transformation into foal/semi-
formal techniques and (iv) UML diagram extraction.

Traces Traces collection

Generation

and filtering

Incremental
extraction of formal

or semi-formal

UML diagram ‘_

extraction

[Il. RELATED WORKS
Several studies have been performed on the reveioc
engineering of UML diagrams [4,5,6,7,8,9,10,11]. We Fig.1: Overview of the proposed process

distinguish two categories in existing approactstatic and
dynamic. Static analysis is to use the code stradtugenerate
the sequence diagram. One of the main works basedatic
analysis is that Rountev et al. [4]. They propoaedapproach
for the extraction of UML sequence diagrams frondeco
through building the control flow graphs. The dynam
analysis is to analyze the performance of the eafin.
Several studies try to generate the sequence diadra
analyzing the execution traces. In [5] is propoaedpproach
to build a high-level sequence diagram increment&dbm
basic diagram using the operators introduced by UML In
[6] they try to build a high-level sequence diagrdrom
combined fragment using the state vector descriktimg
system. In [7], it is proposed an approach complatgnamic
based on the LTS (labeled transition system) forgeretraces
collected and generate a high-level sequence dragra
These approaches have succeeded in

representative UML behavior.
limitations. These limitations include the infornoet filtering
problem. Thus, the resulting sequence diagram ownta lot
of useless information that does not help to undads the
software.

WWW.ijaems.com

(i). Traces generationTo extract high level UML behavior
diagrams from an oriented-object programs, we cotnate on
reverse engineering relies on dynamic analysismastioned
by [8, 9], dynamic analysis is more interestingtedito the
reverse engineering of behavior diagram of objeitrved
systems because of inheritance, polymorphism amrdic
binding. This dynamic analysis is usually performasing
execution trace. There are multiple ways to gepezaecution
traces [1]. This can include instrumentation of rseucode,
virtual machines (ex: java programs) or the use aof
customized debugger.

(ii). Traces collection and filteringOur aim at this stage is to
collect the major events occurring during the gyste
executions. The system behavior is related to tivir@nment
entry data, in particular, values introduced by teer to
initialize specific system variables. Thus, one ocex®n

generatgggsion is not enough to identify all system beadraviSo we
But they recognize somchose to run the system several times to geneiffredt

executions traces. Each execution trace correspoada
particular scenario of a given service (use cabf)esystem.
After that, a filtering process is applied for &acThis process
is based on the package of the object preseneifirta trace.
(iii). Incremental extraction of formal or semi-formal
techniques This is the main step of our approach. It death w
the known problem of analyzing traces. Indeed, ofi¢he

Page | 1014

International Journal of Advanced Engineering, Margement and Science (IJAEMS)

Infogain Publication (L nfogainpublication.com)

[Wallssue-7, July- 2016]
ISS 2454-1311

major challenges to reverse engineering high Idedlavior
diagram is to analyzing the multiple execution #®cto
identify common and method invocations throughbetihput
traces. In this sub-section, we present our appradoich uses
formal or semi-formal techniques to deal with thi®blem.
We formalized and developed an process that takeeral
execution traces as input and generate incremgradibrmal
technique that represents the system behavior.

approaches which are based on static analysis tialseecond
concerns dynamic analysis based approaches. Stetigsis is
done on static information which describes thecstme of the
software as it is written in the source code. Hosvedynamic
analysis is based on the system runtime behavfornvation
which can be captured by separated tools as in kY],
instrumentation techniques as in [8], or by debnggi
techniques.

(iv). UML diagram extraction. In this activity, we generate M. L. Nelson [14] gives a detailed discussion d fhractical

and build the UML diagrams behavioral
transformation models rules (static and dynamic).

using

V. RESULTS/DISCUSSION
Reverse engineering is one the essential partsoftivare
maintenance. It involves high risk especially whéme
maintenance and development teams are differemtadiing
the static model from the source code may not bgvating
factor for software maintenance. Many reverse egging
tools and approaches are proposed in
[4,5,6,7,8,9,10,11,12,13]. However each represamly a
subset of operational requirements. The processewdrse
engineering is resulting in models consisting dfydhe static
parts of design. Though the communication amongatbjis
transformed, but reverse engineering of the intestage of the
object is not presented. Static models are limitectheir
usefulness. It is important to realize that quaditlyibutes such
as performance and reliability can be predictednfrthe
dynamic behavioral models of the system.
Many works investigate the reverse-engineering MiLstatic
models, such as class diagrams. However, theitléswork
on reverse-engineering dynamic models, althougladutition
to static models, the UML includes notations to ciyethe
dynamic behaviour of programs, such as sequenagadies
and statecharts.
Dynamic models of programs are as important agstaidels
because they allow maintainers to
interactions among objects and to disambiguate agessends
when inheritance, delegation, polymorphism,
binding, re°ection are used intensively (for examphhen
using design patterns such as the Abstract Fadiryerver).
In this paper we proposed a new methodology tcaextdML
dynamic behavior diagrams from the source codejéer, c#)
using both the static and dynamic analysis. Thipragch
deals with the reverse engineering from executraness for
object-oriented software. Our approach uses a rdifte
methodology to deal with the problem of executioacés
analysis.
There are two main categories of existing UML bébav
reverse engineering approaches: the first categeligrs to

WWW.ijaems.com

thalifficulties

involved in the reverse engineering.hete
difficulties include that of the choice of the |&wd abstraction
needed, and that of the formal/cognitive distinttio
Computers and programming languages are formalgwhée
human cognitive capabilities are non- formal. Tlenes the
result of any reverse engineering work could beyver
subjective. Any program is “understood to the ektéat the
reverse engineer can build up correct high leveingl from
the low level details available in the program.”

literatutWe show in this paper the importance of the reverse

engineered static and dynamic views of the systetmtacture
in order to predict the system quality attributesl analyze
possible plans of the system evolution.

VI. CONCLUSION
Reverse Engineering is the important building bloick
understanding and maintaining the code. Maintalitgbi
increases when the dynamic behavior of the object i
translated into design from the source code.
In this paper, we have presented an overview orrdlerse
engineering of behavioral diagrams. Our approadcisdeith
the reverse engineering from execution traces fojeat-
oriented software. The approach uses a differathadology
to deal with the problem of execution traces ariafyzWe use
for that the CPN. In addition, our approach filtierces. This is
very important in the case of GUI systems. It ma&saglso to

identify compleretect the “par” operator which is very importamt the

context of multi-threading system.

dynami€he future work is to evaluate this approach onaremmplex

system. In addition, we plan to add a new steputcapproach.
This step include a static analyze of the souraecdhis is
very important to have a more accurate sequengeatia[15].

We will also try to handle the problem to extractsiate
diagram and other model of the UML diagram [16.14Fo,

the future work will focus on building a CASE Todtb

automate the proposed approach and to verify altguses
using Petri Net formal method.

Page | 1015

International Journal of Advanced Engineering, Margement and Science (IJAEMS)

Infogain Publication (L nfogainpublication.com)

[Wallssue-7, July- 2016]
ISS 2454-1311

[1]

(3]

[4]

[6]

(8]

[9]

REFERENCES
B. Cornelissen, A. Zaidman, et A. Deursen, “A Colhéed

[13]J.-L. Hainaut, C. Tonneau, M. Joris, M. Chandelon,

“Transformation-based database reverse engineering

Experiment for Program Comprehension through Trace Lecture Notes in Computer Science, vol. 823, Sgmting

Visualization”, IEEE Trans. on Software Engineering
2010

OMG. Unified Modeling Language (OMG UML),
Superstructure. V2.1.2. Nov.2007.

Stan Jarzabek and Guosheng Wang, “Model
Design of Reverse Engineering Tools,” Software
Maintennance: Research and Practice, J. Softw. tMain
Res. Pract.10, 353-380 (1998).K. Elissa, “Titlgpaper if
known,” unpublished.

Elliot j. Chikofsky and James H. Cross Il. Reverse

engineering and design recovery : a taxonomy. IEEE

Software, 1990

A. Rountev, O. Volgin, and Miriam Red-doch. Control[17] M. H. Abidi, A. Jakimi, E. H. El Kinani.

Berlin, 1994, p. 364.

[14] Michael L. Nelson “A Survey of reverse Engineeramy

Program comprehension” April 19, 1996.

[15]A. Jakimi, L. Elbermi and M. El Koutbi, “Software
Based Development for UML Scenarios: Design, fusion and

code generation”. International Review on Compuéers
Software, Vol. 6. n. 5, pp. 683-687, 2011.

[16]C Baidada, E. Bouziane and A. Jakimi, A New
Methodology for Reverse Engineering of UML
Behavioral, first international conference of high

innovation in computer science, June 01-03, kenitra
morocco, 2016.
A New

flow analysis for reverse engineer-ing of sequence Approach the Reverse Engineering UML State Machine

diagrams. Technical Report OSU-CISRC-3/04-TR12,
Ohio State University, March 2004.

M. K. Sarkar , T. Chaterjee ; Reverse Engineerif:
Analysis of Dynamic Behavior of Object Oriented
Programs by Extracting UML Interaction Diagram,
International Journal of Computer Technology &
Applications, Vol 4 (3) , 2013 ,378-383.

R. Delamare, B. Baudry, Y.L/ Traon “Reverse-
engineering of UML 2.0 Sequence Diagrams from
Execution Traces” Workshop on Object-Oriented
Reengineering at ECOOP 06, Nantes, France, Jul§.200
T. Ziadi, M. Aurélio A. da Silva, L. Hillah, M. Zize, “A
Fully Dynamic Approach to the Reverse Engineerifig o
UML Sequence Diagrams”, 16th IEEE International
Conference on Engineering of Complex Computer
Systems, 2011, pp. 107-116, (IEEE Computer Society)

L. C. Briand, Y. Labiche, J. Leduc, "Towards the/&se
Engineering of UML Sequence Diagrams for Distriloute
Java Software", |EEE Transactions on Software
Engineering, vol. 32 (9) , 2006 , pp. 642-663.

[10]R. Zhao, and L. Lin, “An UML Statechart Diagram-

Based MM-Path Generation Approach for Object-
Oriented Integration Testing”,Enformatika; 2006,|V15,
p259.

[11]1D.H.A. van Zeeland, “Reverse-engineering state nm&ch

diagrams from legacy C-code”, proceedings of 120hfC
on Entity-Relationship Approach - Arlington-Dalld3ec.
1993.

[12]S. Christian, “Extracting n-ary relationships thgbu

database reverse engineering”, B. Thalheim (Ed9¢.P
15th Internat. Conf. on Conceptual Modeling, Cadtbu
Germany (1996), pp. 392—-405.

WWW.ijaems.com

from Java Code. International Conference on Imgfefit
Systems and Computer Vision (ISCV’'2015), March 85-2
2015, Fes, Morocco.

Page | 1016

