
International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-7, July- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1012

An Analysis and New Methodology for Reverse
Engineering of UML Behavioral

Chafik Baidada, El Mahi Bouziane, Abdeslam Jakimi

Software Engineering & Engineering of Information Systems Group, Computer Sciences Department, Moulay Ismaïl University,

FST Errachidia, Morocco

Abstract— The emergence of Unified Modeling Language
(UML) as a standard for modeling systems has encouraged the
use of automated software tools that facilitate the development
process from analysis through coding. Reverse Engineering
has become a viable method to measure an existing system
and reconstruct the necessary model from its original. The
Reverse Engineering of behavioral models consists in
extracting high-level models that help understand the behavior
of existing software systems. In this paper we present an
ongoing work on extracting UML diagrams from object-
oriented programming languages. we propose an approach
for the reverse engineering of UML behavior from the analysis
of execution traces produced dynamically by an object-
oriented application using formal and semi-formal techniques
for modeling the dynamic behavior of a system. Our methods
show that this approach can produce UML behavioral
diagrams in reasonable time and suggest that these diagrams
are helpful in understanding the behavior of the underlying
application.
Keywords— Reverse Engineering, UML, Behavior
diagrams; Execution traces.

I. INTRODUCTION
Recently, software is becoming increasingly complex.
Traditional software engineering research and development
focuses on increasing the productivity and quality of systems
under development or being planned. Without diminishing the
importance of software engineering activities focusing on
initial design and development, empirical evidence suggests
that significant resources are devoted to reversing the effects
of poorly designed or neglected software systems. In a perfect
world, all software systems, past and present, would be
developed and maintained with the benefit of well-structured
software engineering guidelines. In the reality, many systems
are not or have had their structured design negated. The
understanding of these programs is an essential part of
maintenance, reuse, validation and other activities of software
engineering. An important part of maintenance time is often

devoted to reading the code to understand the functionality of
the program. According to some studies, up to 60% of the
maintenance is devoted to understanding the software [1].
Therefore, it is important to develop tools and techniques that
facilitate the task of understanding such systems because the
documentation is often absent, outdated or incomplete. An
effective recognition technique to understand such programs is
reverse engineering. In the world of object-oriented, target
language most used for reverse engineering is UML [2] due to
its significant presence in the industry.
The remainder of this paper is organized as follows. In the
next section, we present a general idea of the UML and reverse
engineering relevant to this work. Section 3 provides
background about various approaches to implement UML
behavior. In section 4, we explain our research method.
Section 5 gives result and discussion of approach. Finally, in
section 6, we summarize and conclude.

II. UML AND REVERSE ENGINEERING
A. Objectives of Reverse Engineering
The primary purpose of reverse engineering a software system
is to increase the overall comprehensibility of the system for
both maintenance and new development. When we try to
characterize reverse engineering in terms of its objectives,
there are six key objectives [3].
1. Cope with complexity: We must develop method to better

deal with the share volume and complexity of the system.
A key to controlling these attributes is automated support.
Reverse Engineering methods and tools, combined with
case environments, will provide a way to extract relevant
information so decision makers can control the process
and the product in the system.

2. Generate alternate views: Graphical representation has
long accepted as comprehension aids. However, creating
and maintaining them continuous to be a bottleneck in the
process. Reverse-engineering tools facilitate the
generation or regeneration of graphical representation
from other forms. While many designers work from a

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-7, July- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1013

single, primary perspective (like dataflow diagrams),
reverse-engineering tools can generate additional views
from other perspective (like control flow diagram,
structure chart, and entity relationship diagrams) to aid the
review and verification process.

3. Recover lost information: The continuing evolution of
large, long –lived systems leads to lost information about
the system design. Modifications are frequently not
reflected in the documentation, particularly at a higher
level than the code itself. While it is no substitute for
preserving design history in the first place, reverse-
engineering – particularly design recovery is our way to
salvage whatever we can form the existing system.

4. Detect side effect: Both haphazard initial design and
successive modification can lead to unintended
ramification and side effects that impede a system‟s
performance in subtle ways.

5. Synthesize higher abstraction: Reverse-engineering
requires methods and techniques for creating alternate
views that transcend to higher abstraction levels. There is
a debate in the software community as to how completely
process can be automated. Clearly, expert-system
technology will play a major role in achieving the full
potential of generating high-level abstraction.

6. Facilitate reuse: A significant issue in the movement
toward software reusability is the large body of existing
software assets. Reverse- engineering can help detect
candidates for reusable software components from present
system

B. UML Behavioral
UML is a standardized general-purpose modeling language in
the field of object-oriented software engineering. UML
includes a set of graphic notation techniques to create visual
models of object-oriented software systems. UML combines
techniques from data modeling, business modeling, object
modeling, and component modeling and can be used
throughout the software development life-cycle and across
different implementation technologies. UML diagrams
represent two different views of a system model:
1. Static (or structural) view: This view emphasizes the static

structure of the system using objects, attributes, operations,
and relationships. Ex: Class diagram, Composite Structure
diagram.

2. Dynamic (or behavioral) view: This view emphasizes the
dynamic behavior of the system by showing collaborations
among objects and changes to the internal states of objects.
Ex: Sequence diagram, Activity diagram, State Machine
diagram.

UML 2.2 has 14 types of diagrams divided into two
categories:
1. Structure Diagrams: These diagrams emphasize the things

that must be present in the system being modeled. Since
they represent the structure, they are used extensively in
documenting the software architecture of software
systems.

2. Behavior Diagrams: These diagrams emphasize what must
happen in the system being modeled. Since they illustrate
the behavior of a system, they are used extensively to
describe the functionality of software systems.

Object oriented analysis and design methods offer a good
framework for behavior. In this work, we adopted the UML,
which is a unified notation for object oriented analysis and
design.
UML is a good target language for the reverse engineering of
models since it is largely used and offers different diagrams.
The reverse-engineering of UML static diagrams – like class
diagrams – has been studied and is now implemented in
several tools. Static views of the system allow engineers to
understand its structure but it does not show the behavior of
the software. To fully understand its behavior, dynamic
models are needed, such as sequence diagrams or statecharts.
C. Reverse Engineering of UML
Reverse engineering is the process of analyzing a subject
system to identify the system’s components and their
interrelationships and create representations of the system in
another form or at higher levels of abstraction [1]. Reverse
engineering is needed when the process to understand a
software system would take a long time due to incorrect, out
of date documentation, complexity of the system and the
insufficient knowledge of the maintainer of the system.
Reverse Engineering is used to recover lost information, to
improve or provide documentation, to detect side effects, to
reuse the components and to reduce the maintenance effort.
Nowadays, UML is the most adopted modeling language for
system design in the software engineering organizations and
industry. The main reasons are: (i) its friendly and intuitive
notations, (ii) availability of commercial and open source tools
that support the UML notations and (iii) autonomy of
particular programming languages and development processes.
This technique is widely used in several disciplines including
new technologies such as mechanics, electronics, etc. In
computer science, Reverse engineering dynamic models is to
convert the code to models such as UML sequence diagram,
state diagram, etc, the goal is to increase the level of
abstraction to better understand the behavior of software.
Reverse engineering dynamic UML models is a very efficient
way to understand complex software whose source code is

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-7, July- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1014

absent or documentation is outdated. It is also used in software
engineering activities such as testing and validation.
In this paper, we consider UML diagrams as target design
models for reverse-engineering. This means that we focus only
on reverse-engineering of UML diagrams (i.e. the process that
analyzes the execution of the system and creates UML
diagrams that depicting its structure and its behavior). UML is
an object-oriented language for software system modeling. It
is composed of a set of diagrams which allow specifying the
several aspects of a system. The two main aspects are: static
(structural diagrams) and behavior (dynamic) aspects. The
static aspect of system can be specified using class or
component diagrams, while the behavior aspect can be
specified using sequence diagrams, state machines and activity
diagrams...etc.
In the earlier approaches, reverse engineering of object
oriented code resulted in generation of class diagrams,
interaction diagrams and use case model in general. However
they represent only the static nature of the object oriented
systems.

III. RELATED WORKS
Several studies have been performed on the reverse
engineering of UML diagrams [4,5,6,7,8,9,10,11]. We
distinguish two categories in existing approaches: static and
dynamic. Static analysis is to use the code structure to generate
the sequence diagram. One of the main works based on static
analysis is that Rountev et al. [4]. They proposed an approach
for the extraction of UML sequence diagrams from code
through building the control flow graphs. The dynamic
analysis is to analyze the performance of the application.
Several studies try to generate the sequence diagram by
analyzing the execution traces. In [5] is proposed an approach
to build a high-level sequence diagram incrementally from
basic diagram using the operators introduced by UML 2.0. In
[6] they try to build a high-level sequence diagram from
combined fragment using the state vector describing the
system. In [7], it is proposed an approach completely dynamic
based on the LTS (labeled transition system) for merger traces
collected and generate a high-level sequence diagram.
 These approaches have succeeded in generating
representative UML behavior. But they recognize some
limitations. These limitations include the information filtering
problem. Thus, the resulting sequence diagram contains a lot
of useless information that does not help to understand the
software.

IV. RESEARCH METHOD
The reverse engineering of behavioral models consists in
extracting high-level models that help understand the behavior
of existing software systems. Our approach for reverse
engineering of UML behavior diagrams is defined in four
main steps (Fig 1.): (i) traces generation, (ii) traces collection
and filtering, (iii) traces transformation into formal/semi-
formal techniques and (iv) UML diagram extraction.

Fig.1: Overview of the proposed process
(i). Traces generation. To extract high level UML behavior
diagrams from an oriented-object programs, we concentrate on
reverse engineering relies on dynamic analysis. As mentioned
by [8, 9], dynamic analysis is more interesting suited to the
reverse engineering of behavior diagram of object-oriented
systems because of inheritance, polymorphism and dynamic
binding. This dynamic analysis is usually performed using
execution trace. There are multiple ways to generate execution
traces [1]. This can include instrumentation of source code,
virtual machines (ex: java programs) or the use of a
customized debugger.
(ii). Traces collection and filtering. Our aim at this stage is to
collect the major events occurring during the system
executions. The system behavior is related to the environment
entry data, in particular, values introduced by the user to
initialize specific system variables. Thus, one execution
session is not enough to identify all system behaviors. So we
chose to run the system several times to generate different
executions traces. Each execution trace corresponds to a
particular scenario of a given service (use case) of the system.
After that, a filtering process is applied for traces. This process
is based on the package of the object present in the line trace.
(iii). Incremental extraction of formal or semi-formal
techniques. This is the main step of our approach. It deals with
the known problem of analyzing traces. Indeed, one of the

UML diagram

extraction

Source and
Executable

Code
 Traces

Generation

 Traces collection
and filtering

 Incremental
extraction of formal

or semi-formal

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-7, July- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1015

major challenges to reverse engineering high level behavior
diagram is to analyzing the multiple execution traces to
identify common and method invocations throughout the input
traces. In this sub-section, we present our approach which uses
formal or semi-formal techniques to deal with this problem.
We formalized and developed an process that takes several
execution traces as input and generate incrementally a formal
technique that represents the system behavior.
(iv). UML diagram extraction. In this activity, we generate
and build the UML diagrams behavioral using the
transformation models rules (static and dynamic).

V. RESULTS/DISCUSSION
Reverse engineering is one the essential parts of software
maintenance. It involves high risk especially when the
maintenance and development teams are different. Extracting
the static model from the source code may not be motivating
factor for software maintenance. Many reverse engineering
tools and approaches are proposed in literature
[4,5,6,7,8,9,10,11,12,13]. However each represents only a
subset of operational requirements. The process of reverse
engineering is resulting in models consisting of only the static
parts of design. Though the communication among objects is
transformed, but reverse engineering of the internal state of the
object is not presented. Static models are limited in their
usefulness. It is important to realize that quality attributes such
as performance and reliability can be predicted from the
dynamic behavioral models of the system.
Many works investigate the reverse-engineering of UML static
models, such as class diagrams. However, there is little work
on reverse-engineering dynamic models, although, in addition
to static models, the UML includes notations to specify the
dynamic behaviour of programs, such as sequence diagrams
and statecharts.
Dynamic models of programs are as important as static models
because they allow maintainers to identify complex
interactions among objects and to disambiguate message sends
when inheritance, delegation, polymorphism, dynamic
binding, re°ection are used intensively (for example, when
using design patterns such as the Abstract Factory, Observer).
In this paper we proposed a new methodology to extract UML
dynamic behavior diagrams from the source code (ex. java, c#)
using both the static and dynamic analysis. This approach
deals with the reverse engineering from execution traces for
object-oriented software. Our approach uses a different
methodology to deal with the problem of execution traces
analysis.
There are two main categories of existing UML behavior
reverse engineering approaches: the first category refers to

approaches which are based on static analysis while the second
concerns dynamic analysis based approaches. Static analysis is
done on static information which describes the structure of the
software as it is written in the source code. However, dynamic
analysis is based on the system runtime behavior information
which can be captured by separated tools as in [7], by
instrumentation techniques as in [8], or by debugging
techniques.
M. L. Nelson [14] gives a detailed discussion of the practical
difficulties involved in the reverse engineering. These
difficulties include that of the choice of the level of abstraction
needed, and that of the formal/cognitive distinction.
Computers and programming languages are formal, while the
human cognitive capabilities are non- formal. Therefore, the
result of any reverse engineering work could be very
subjective. Any program is “understood to the extent that the
reverse engineer can build up correct high level chunks from
the low level details available in the program.”
We show in this paper the importance of the reverse
engineered static and dynamic views of the system architecture
in order to predict the system quality attributes and analyze
possible plans of the system evolution.

VI. CONCLUSION
Reverse Engineering is the important building block in
understanding and maintaining the code. Maintainability
increases when the dynamic behavior of the object is
translated into design from the source code.
In this paper, we have presented an overview on the reverse
engineering of behavioral diagrams. Our approach deals with
the reverse engineering from execution traces for object-
oriented software. The approach uses a different methodology
to deal with the problem of execution traces analyzing. We use
for that the CPN. In addition, our approach filter traces. This is
very important in the case of GUI systems. It manages also to
detect the “par” operator which is very important in the
context of multi-threading system.
The future work is to evaluate this approach on more complex
system. In addition, we plan to add a new step to our approach.
This step include a static analyze of the source code. This is
very important to have a more accurate sequence diagram [15].
We will also try to handle the problem to extract a state
diagram and other model of the UML diagram [16.17]. Also,
the future work will focus on building a CASE Tool to
automate the proposed approach and to verify all processes
using Petri Net formal method.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-7, July- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1016

REFERENCES
[1] B. Cornelissen, A. Zaidman, et A. Deursen, “A Controlled

Experiment for Program Comprehension through Trace
Visualization”, IEEE Trans. on Software Engineering,
2010

[2] OMG. Unified Modeling Language (OMG UML),
Superstructure. V2.1.2. Nov.2007.

[3] Stan Jarzabek and Guosheng Wang, “Model Based
Design of Reverse Engineering Tools,” Software
Maintennance: Research and Practice, J. Softw. Maint:
Res. Pract.10, 353-380 (1998).K. Elissa, “Title of paper if
known,” unpublished.

[4] Elliot j. Chikofsky and James H. Cross II. Reverse
engineering and design recovery : a taxonomy. IEEE
Software, 1990

[5] A. Rountev, O. Volgin, and Miriam Red-doch. Control
flow analysis for reverse engineer-ing of sequence
diagrams. Technical Report OSU-CISRC-3/04-TR12,
Ohio State University, March 2004.

[6] M. K. Sarkar , T. Chaterjee ; Reverse Engineering : An
Analysis of Dynamic Behavior of Object Oriented
Programs by Extracting UML Interaction Diagram,
International Journal of Computer Technology &
Applications, Vol 4 (3) , 2013 ,378-383.

[7] R. Delamare, B. Baudry, Y.L/ Traon “Reverse-
engineering of UML 2.0 Sequence Diagrams from
Execution Traces” Workshop on Object-Oriented
Reengineering at ECOOP 06, Nantes, France, July 2006.

[8] T. Ziadi, M. Aurélio A. da Silva, L. Hillah, M. Ziane, “A
Fully Dynamic Approach to the Reverse Engineering of
UML Sequence Diagrams”, 16th IEEE International
Conference on Engineering of Complex Computer
Systems, 2011, pp. 107-116, (IEEE Computer Society)..

[9] L. C. Briand, Y. Labiche, J. Leduc, "Towards the Reverse
Engineering of UML Sequence Diagrams for Distributed
Java Software", IEEE Transactions on Software
Engineering, vol. 32 (9) , 2006 , pp. 642-663.

[10] R. Zhao, and L. Lin, “An UML Statechart Diagram-
Based MM-Path Generation Approach for Object-
Oriented Integration Testing”,Enformatika; 2006, Vol. 16,
p259.

[11] D.H.A. van Zeeland, “Reverse-engineering state machine
diagrams from legacy C-code”, proceedings of 12th Conf.
on Entity-Relationship Approach - Arlington-Dallas, Dec.
1993.

[12] S. Christian, “Extracting n-ary relationships through
database reverse engineering”, B. Thalheim (Ed.), Proc.
15th Internat. Conf. on Conceptual Modeling, Cottbus,
Germany (1996), pp. 392–405.

[13] J.-L. Hainaut, C. Tonneau, M. Joris, M. Chandelon,
“Transformation-based database reverse engineering”,
Lecture Notes in Computer Science, vol. 823, Springer,
Berlin, 1994, p. 364.

[14] Michael L. Nelson “A Survey of reverse Engineering and
Program comprehension” April 19, 1996.

[15] A. Jakimi, L. Elbermi and M. El Koutbi, “Software
Development for UML Scenarios: Design, fusion and
code generation”. International Review on Computers and
Software, Vol. 6. n. 5, pp. 683-687, 2011.

[16] C Baidada, E. Bouziane and A. Jakimi, A New
Methodology for Reverse Engineering of UML
Behavioral, first international conference of high
innovation in computer science, June 01-03, kenitra,
morocco, 2016.

[17] M. H. Abidi, A. Jakimi, E. H. El Kinani. A New
Approach the Reverse Engineering UML State Machine
from Java Code. International Conference on Intelligent
Systems and Computer Vision (ISCV’2015), March 25-26
2015, Fes, Morocco.

