
International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-7, July- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1017

Survey of Different Data Dependence Analysis
Techniques

Monali Patil, Vandana Jagtap

Computer Department MAEER’s MIT Pune, India

Abstract—Dependency analysis is a technique to detect
dependencies between tasks that prevent these tasks from
running in parallel. It is an important aspect of parallel
programming tools. Dependency analysis techniques are
used to determine how much of the code is parallelizable.
Literature shows that number of data dependence test has
been proposed for parallelizing loops in case of arrays with
linear subscripts, however less work has been done for
arrays with nonlinear subscripts. GCD test, Banerjee
method, Omega test, I-test dependence decision algorithms
are used for one-dimensional arrays under constant or
variable bounds. However, these approaches perform well
only for nested loop with linear array subscripts. The
Quadratic programming (QP) test, polynomial variable
interval (PVI) test, Range test are typical techniques for
nonlinear subscripts. The paper presents survey of these
different data dependence analysis tests.
Keywords— Dependence analysis, Parallelization, Data
dependence test, Nonlinear subscript, Variable bound.

I. INTRODUCTION
The area of dependency analysis has served as grounds for
fruitful research as well as practical implementation.
Program dependency analysis is a technique to analyze
programs and determine potential flow of data between
program statements. It represents required arrangement of
statements that need to be preserved in a program. Data
dependence occurs when two statements in a program are
accessing the same shared memory location one of them
performs write operation on the shared memory.
Data dependency is one of the major hindrances in the area
of high performance computing which aims at delivering
higher performance for solving large problems. While
implementing an algorithm presence of data dependence
requires the statements of an algorithm to access shared
memory location. Further dependence implies further access
time or more inter process communication and increases
complexity of an algorithm. This accordingly degrades the
real-time performance of system. Parallelization refers to
converting the sequential code to multi-threaded code to

utilize available computing power. Program parallelization
has become mainstream research topic due to the invention
of multi core processors. Although multi-core processors
could provide high processing speed, but legacy applications
could not utilize it as most of them were written in serial
fashion. Thus, focus of research shifted to development of
tools that could detect part of a code that can be performed
concurrently in a program. The approach to parallelism is
based on the learning of data dependencies as dependence
prevents two computations from executing in parallel. In
general, fewer dependencies, greater the parallelism [1].
Therefore, it is essential to study and analyse dependencies
in a program.
In section II we discuss the basic data dependence problem
and how dependence tests solve this problem. In section III
we present survey of available dependence techniques which
includes GCD, Banerjee, Omega, I, Range, PVI and
Quadratic test. Section IV demonstrates the review of these
tests in tabular format. Finally, in section V, we present our
conclusion.

II. DATA DEPENDENCE PROBLEM
Two statements are said to be data dependent if; one
statement follows the other, they share a memory location
and one of them writes to it. Based on the order in which
these statements access the shared location classifies
dependency into following classes:

i. True Dependence (read-after-write): statement 1
writes to the memory location while statement 2
reads from it.

ii. Anti Dependence (write-after-read): statement 1
reads from the memory location while statement
2 writes to that location.

iii. Output Dependence (write-after-write): both
statement 1 and 2 writes to the same memory
location.

These memory accesses in sequential languages are
performed either with scalar variables, array variables or
pointer references [2]. However dependence problem for
scalar variables can be solved with techniques such as

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-7, July- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1018

induction variable substitution, constant propagation etc, and
dependence problem for pointers constitutes an altogether
separate research area as they deal with dynamic memory
accesses which are difficult to handle. So this study
particularly focuses on data dependence problem for array
references inside loop nests.
Inside loop, each statement can be executed several times.
Loop independent dependence is when dependence relation
between two statement instances is executed in the same
iteration of a loop.
Example of loop independent dependence,
for(int j=0; j<100; j++) {
 a[j]=a[j-1]
}

Loop carried dependence occurs when data dependence
relation between two statement instances is executed in two
different iterations i.e. source and sink occurs on different
iterations.
Example of loop carried dependence,
 for(int j=0; j<100; j++) {
 a[j]=a[j-1]
}

To convert sequential loop into parallel loop, it should
not contain any loop carried dependences.

The concept of dependence is defined with information
about the respective iterations in which the dependent
instances occur [2]. This information is expressed in terms of
Distance vector and Direction vector.

i. Distance Vector -If two statements share n
common loops then distance vector computes
subtraction of vectors representing these
common loops for the two statements. Most
loop transformation including parallelization
and vectorization requires only sign of the
elements in the distance vector. The sign of
distance vector denotes the direction of
dependence in a program.

Distance vector δ=
I(vector representing - I’(vector representing

 Common
loops for common loops for

 Statement 1)
statement 2)

ii. Direction Vector- When testing for data
dependence, direction vector for all dependent
instances are calculated. A vector of the form (
d1, d2, d3,……, dn) where dk Є (<, >, =, *), 1<k<n,
is termed as a direction vector. A data

dependence exists between statements with
direction vector dk such that,

dk= < if Ik < I’k
 = if Ik = I’k
 > if Ik > I’k

Basic dependence problem is to determine if two indexed
elements of an array would represent the same memory
location under certain given conditions. When a loop has no
dependence then it can be executed in parallel otherwise the
loop must be run in sequential order. To solve the problem of
data dependence inside loops means to solve a system of
linear Diophantine equations subject to a set of constraints
which may take different forms based on the program and
characteristics of dependence under consideration. If there
does not exist any solution to these equations then there is no
dependence otherwise dependence exists between statements
in a loop. However, there exist two major types of
dependence tests i.e. exact test and inexact (approximate)
tests. In inexact test, there is no dependence when an integer
solution to the system of equations is not available but they
assume dependence when the outcome is not known.

III. DATA DEPENDENCE TESTS

It has been more than 40 years since the first data
dependence test was proposed [3]. Data dependence
techniques for linear subscripts were well developed.
Conventional approaches perform well only for nested loop
with linear array subscripts and in each test there is tradeoff
between accuracy and efficiency. Compilers use dependence
testing suite for analyzing dependencies in a program.
Current parallelizing compilers generally analyze
dependence with a time saving but inefficient test first and
then use an exact but time-consuming test. The exact test
works as a backup test when the inexact test fails. This leads
to decrease in analysis time and also maintains accuracy of
dependence testing. Example, In Open64 compiler, testing
suite is composed of GCD and Omega tests.

i. The GCD Test
The GCD test is arguably the most basic of the dependence
tests and is often incorporated into other dependence tests as
an initial screen for dependence [4]. GCD test aims at finding
integer solution to the equation.
The GCD test simply checks for the integer divisibility of the
linear equation i.e. a linear equation has an integer solution if
and only if the greatest common divisor of the coefficients on
the left-hand-side (LHS) of equation uniformly divides the
constant term on the right-hand-side (RHS) of the equation.
If this condition does not hold then there is no solution
possible to the equation and thus no dependence exists.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-7, July- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1019

However, if condition does apply, then it is not necessary
that dependence exists, here; the test returns a maybe answer.
This implies that GCD test is an inexact test. As it is a basic
test for dependency analysis thus has many limitations. It is
incapable of proving dependencies, can only disprove them.
The GCD test is necessary but not sufficient condition for
data dependence.

ii. The Banerjee Test
The Banerjee test is based on the intermediate value theorem
[4]. The test computes minimum and maximum values an
expression on left-hand-side of linear equation can achieve,
under constraints on variables involved in the expression.
Once the minimum and maximum values of an expression
are known then the test checks whether constant term on the
right-hand-side lies between these extreme values. If the
constant does not lie within the range, then no dependence
exists. If it does, then real solution to the linear equation
exists. However, it is not necessary that dependence exists
since there may not be, in fact, an integer solution to the
equation. This inability of Banerjee test to differentiate
between real and integer solutions makes it an inexact test.
Banerjee test provides the direction vector information for
the dependent instances. The GCD test and Banerjee test are
very simple and efficient at disproving dependencies so they
are widely used in compilers.

iii. The I-test
I-test is a conventional dependence analysis technique
designed for linear subscripts. The I-test is based on and
enhances the Banerjee test [5]. It assumes all the advantages
of GCD test and Banerjee test and was proposed considering
problems brought by these two tests. Banerjee test is unable
to differentiate between real and integer solution to the linear
equation, while I-test can positively prove or disprove
existence of integer solution in most cases.

The I-test uses the concept of integer interval equation,
a1x1 + a2x2 +…..+ anxn = [L, U]. All the ordinary linear
equations are denoted with integer interval equation with
constant term on the right-hand-side between L and U
bounds. The above interval equation has an integer solution
if and only if at least one of the equations in the set has an
integer solution, subject to constraints i.e. there exists a
solution if the value realized by the left-hand-side expression
is between L and U. The I-test is an exact test but fails to
solve problem with non-linear subscripts.

iv. The Omega Test
The Omega test is based on the Fourier-Motzkin variable
elimination (FMVE) algorithm and its extensions. FMVE is
a mathematical algorithm for eliminating variables from a
system of inequalities.

Omega test takes set of constraints as an input. These
constraints can be in the form of equality or inequality
conditions obtained from the subscript expression, iteration
index bounds or if-statements. Then Omega test performs
series of variable elimination operations to minimize the
problem into smaller equivalent problems which can be
solved recursively. First, all the input constraints are
normalized by dividing coefficients by Greatest common
divisor of each constraint. In the next step the test eliminates
all equations such as by replacing two inequalities by an
equation. This process continues repeatedly until a
coefficient having absolute value of one is found and the
system can be reduced by one equation. The Omega test then
performs a Fourier-Motzkin projection of the problem
constraints which is a very expensive step [6]. This
Fourier-Motzkin projection is performed on dimension of
variable that is eliminating.
In data dependence problem, the Omega test can be applied
to a lot of cases. The Omega test can be used for array
references with coupled subscripts which introduce
equations in the dependence system that share common
variables. The Omega test can handle symbolic variable, that
appear in subscript expression and which do not have
numerical value. Data dependence in this case is tested by
determining values for loop index variables and symbolic
variable satisfying constraints of the problem. The Omega
test can also handle triangular, trapezoidal bounds and nested
if-statements. This makes Omega test a very powerful test
but the cost of Omega test is high. The test has very costly
initialization and needs a lot of memory to hold all these
sub-problems.

v. The Range Test
Blume and Eigenmann proposed the Range test. The Range
test is mainly used to check whether a dependence relation
exists for nonlinear expressions [7]. The expression that
cannot be written in a1x1 + a2x2 +…..+ anxn+a0 format are
called as nonlinear expressions where a0, ak are integer
constants and xk is loop index variable for 1<k<n.
The Range test is based on the extreme value computation
just like Banerjee test. It works as, for a given iteration of a
loop, the accessed array subscript range is considered a
symbolic expression; and if this range does not overlap with
the range accessed in the next iteration, then no dependence
exists between the iterations of a loop. The Range test is a
subscript-by-subscript test and does not consider the rest of
the array subscripts while testing for data dependence.

vi. The PVI Test
The PVI polynomial variable interval is a dependence test for
nonlinear subscripts. It can accurately handle couple

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-7, July- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1020

subscript polynomial expressions and trapezoidal bounds
[8].
The PVT test extends the I-test which fails to solve the
dependence problem for nonlinear subscripts. It is based on
interval solution theories for polynomial equation and works
by repeatedly eliminating variables from the polynomial
interval equation. The PVI test consists of three steps, the
first step is to rewrite the Diophantine equations into the
form of polynomial interval equation subjected to
inequalities. In the next step, it repeatedly eliminates
variables which do not appear in any constraints in the
equation. In the last step, it checks whether dependence
exists. The 2nd step results in an integer interval equation
with zero on the left-hand-side and integer interval on the
right-hand-side. If zero belongs to the integer interval on the
right-hand-side then there exists solution to the system of
equations and thus dependence exists.

vii. The Quadratic test
The quadratic test is based on subscript-by subscript idea
which solves one equation at a time other than solving the
whole system.
Quadratic test is defined for cases when the dependence
equation is quadratic and only one loop index appears in the
subscript [9]. In case of loop carried dependence, there will
be two variables x and z in the equation which are different
instances of the same loop index. The algorithm iterates one
instance variable with other in order to narrow their value
intervals. When either of their intervals becomes null, then
iteration process stops and thus no dependence exists.
Otherwise their intervals are reduced up to one point and
thereby resulting into the solution for the equation. For
quadratic test dependence equation need to be in the
following form,

Ax2 + bz = C
Where x and z are different instances of same index.

The drawback of quadratic test is that it allows only one loop
iteration variable. To overcome the limitations of quadratic
test, quadratic programming (QP) test was proposed [3].
Quadratic programming test treats the left-hand-side
expression of the dependence equation as objective function
and computes its extreme values. If the minimum value is
greater than zero, then there is no dependence. When it is not
greater than zero then the algorithm looks for a solution
making the objective function equal to zero by branch and
bound method. If this is not an integer solution, there is no
dependence.

IV. REVIEW OF DEPENDENCE TESTS

Paper Year
Metho
d Used

Advantage
s

Limitations

Dependence
Analysis

For
Super-comp

uting

1988
GCD
Test

-Simple test
-efficient at
disproving
dependenci

es.

-Inexact test
-ignores

loop limit
and

inequality
constraints
- does not
provide
direction
vector

information.

Automatic
Program

Parallelizatio
n

1993
Banerje
e Test

-simple test
-efficient at
disproving
dependenci

es
-generates
direction
vector

information
.

-Inexact test
-considers

single
subscript of

a
multi-dimen
sional array.

The Omega
Test: a fast

and practical
integer

Programmin
g algorithm

for
dependence

analysis

1992
Omega

Test

-Exact test
-fast and
practical

-generates
distance

and
direction
vector

information
.

-Expensive
test.

The I test: an
improved

dependence
test for

automatic
parallelizatio

n and
vectorization

.

1991 I-test

-inherits all
the benefits
of GCD test

and
Banerjee

test
-extends the

range of
applicabilit

y of
Banerjee

test.

-constraint
of each

variable has
to be integer

-cannot
handle

multi-dimen
sional array
references
involving
coupled

subscripts

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-7, July- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1021

Nonlinear
and symbolic

data
dependence

testing

1998
Range

test

-applicable
for

nonlinear
expressions

.

-subscript
by subscript

test.

A general
data

dependence
analysis for
parallelizing
compilers

2008
PVI
test

-applicable
for

nonlinear
subscripts

-lose
efficiency

when mixed
polynomial

exists in
dependence
equation.

An improved
nonlinear

data
dependence

test

2014

Quadra
-tic

progra
mming

test

-Exact test
-works

efficiently
for mixed

polynomial
s.

-time
complexity

high
-coefficient
matrix of
quadratic

terms
should be
positive

semi-definit
e.

V. CONCLUSIONS

If done correctly, dependence analysis is of immense benefit.
Data dependence information is essential to detecting loop
iterations that can be executed in parallel on multiprocessor.
Advances in data dependence analysis have improved
dependence accuracy, but without much success in
increasing program parallelization.
Literature shows that many dependence tests have been
proposed. Each dependency test is designed for a specific
type of data reference found in the loops. Conventional linear
data dependence tests are not able to satisfy their demands
due to presence of irregular and non-linear subscripts for
some applications. To address this problem, some non-linear
tests are proposed.

ACKNOWLEDGEMENT
We would like to take this opportunity to thank people who
have been constantly supporting and encouraging us in
matters, big or small. Firstly we would like to thank our
Professors for their valuable guidance. Furthermore, we
would like to thank anonymous referees for helping
immensely to improve this paper.

REFERENCES
[1] M.A. Hossaina, U. Kabirb, M.O. Tokhi, “Impact of

data dependencies in real-time high performance
computing,” Elsevier Science B.V. 2002.

[2] Konstantinos Kyriakopoulos, and Kleanthis Psarris “
Data Dependence Analysis Techniques for Increased
Accuracy and Extracted Parallelism,” International
Journal of Parallel Programming, Vol. 32, No. 4,
August 2004.

[3] Jie Zhao , Rongcai Zhao, Xi Chen, Bo Zhao ,“An
improved nonlinear data dependence test,” Springer
Science+Business Media New York 2014.

[4] U. Banerjee,” Dependence Analysis for
Supercomputing,” Boston:Kluwer Academic, 1988.

[5] Xiangyun Kang, David Klappholz and Kleanthis
Psarris,“The I test:an improved dependence test for
automatic parallelization and vectorization,” IEEE
transactions on parallel and distributed systems VOL.
2, NO. 3, July 1991.

[6] William Pugh ,“The Omega Test: a fast and practical
integer programming algorithm for dependence
analysis,” ACM, August 1992.

[7] Blume W., Eigenmann R.,”Nonlinear and symbolic
data dependence testing,” Parallel and distributed
systems IEEE, Dec 1998.

[8] Jing Zhou · Guosun Zeng, “A general data dependence
analysis for parallelizing compilers,” Springer
Science+Business Media, LLC 2008

[9] Jia-Hwa Wu , Chih-Ping Chu, “An exact data
dependence testing method for quadratic expressions,”
Department of Computer Science and Information
Engineering, National Cheng Kung University, Tainan
701, June 2007.

[10] Kleanthis Psarris, Santosh Pande, “Classical
Dependence Analysis Techniques:Sufficiently
Accurate in Practice”, IEEE 28th Hawaii International
Conference on System Sciences, 1995.

[11] Kleanthis Psarris, Konstantinos Kyriakopoulos “An
Experimental Evaluation of Data Dependence Analysis
Techniques,” IEEE transactions on parallel and
distributed systems, VOL. 15, NO. 3, MARCH 2004.

[12] Jia−Hwa Wu and Chih−Ping Chu, “The Quadratic Test:
An Exact Data Dependence Test for Quadratic
Expressions,” Department of Computer Science and
Information Engineering National Cheng Kung
University, Tainan, Taiwan 701, R.O.C.

[13] Paul M. Petersen and David A. Padua,“Static and
Dynamic Evaluation of Data Dependence Analysis
Techniques,” IEEE transactions on parallel and

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-7, July- 2016]
Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1022

distributed systems, VOL. 7, NO. 11, November 1996.
[14] Banerjee U, Eigenmann R, Nicolau A, Padua DA,”

Automatic program parallelization,” IEEE 1993.

