International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-10, Oct- 2016]
ISSN : 2454-1311

Power Consumption and Energy Estimation in

Smartphones
Ahmed Alsheikhy, Reda Amm&t Raafat Elfouly, Mosleh Alharthf

'Department of Electrical Engineering, Northern Bartiniversity, Arar, Saudi Arabia
“Department of Computer Science and Engineeringyésity of Connecticut, Storrs, USA
3Department of Computer Engineering, Cairo Univgrsitairo, Egypt
“Department of Electrical Engineering, Taif UnivéysiTaif, Saudi Arabia

Abstract— A developer needs to evaluate software
performance metrics such as power consumption at an
early stage of design phase to make a device or a
software efficient especially in real-time embedded
systems. Constructing performance models and
evaluation techniques of a given system requires a
significant effort. This paper presents a framewadok
bridge between a Functional Modeling Approach sash
FSM, UML etc. and an Analytical (Mathematical)
Modeling Approach such as Hierarchical Performance
Modeling (HPM) as a technique to find the expected
average power consumption for different layers of
abstractions. A Hierarchical Generic FSM “HGFSM” is
developed to be used in order to estimate the ésgec
average power. A case study is presented to ifitstihe
concepts of how the framework is used to estintade t
average power and energy produced.

Keywords— Finite State Machine (FSM), Hierarchical
Performance Model (HPM), Power consumption, Real-
time embedded systems, Smartphones.

I. INTRODUCTION
In today’s world, using embedded systems is rigipg
extremely rapidly [1]. Many of those systems run on
batteries and power consumption is considered tarbe
important criteria throughout the design processanf
implementation [1,2,3,4]. Very often, a designes ha
rely on a simulation tool to take a decision abahich
design is the best among others. Sometimes that&mo
be particularly time consuming or insufficient. Dt
heavy demands on embedded systems, it is esstmntial
estimate performance metrics such as the delayawdr
consumption. The focus of performance analysis atkth
for real-time embedded systems is more on the sisady
timing aspects and power consumption [1,2]. Inipaldr,
a designer intends to determine which design presluc
less power while a system meets its real-time rements
[2,3]. A performance modeling scheme is required to
evaluate the power consumption caused by
communication and computation by distributed system
architectures and existing software on differemttfpkms

WWwWw.ijaems.com

[1,3,4,5]; and also to identify where bottlenecksw.
Engineers rely on performance modeling to prediet t
expected power before moving to the final stage of
implementation. However, in the absence of a
performance evaluation scheme, they must design and
implement a system to predict the performance defec
bottleneck. Waiting to spot the performance defemts
bottleneck to occur until the final stage of impkartation
and integration between different components result
increased project costs, reduced productivity aaldyd in
schedule [1,2,3,6]; applying performance modelimgl a
evaluation from the first stage of design in angtesm
exhibits better results than those using a “filater”
approach [1,6]. Currently, three approaches eXistt t
evaluate system performance and analysis which lare:
Simulation Based Method, 2- Analytical Based Method
and 3- Direct Measurement [1]. The Hierarchical
Performance Model (HPM) combines and collaborates
direct measurements with the analytical approach thie
help of software performance engineering [2,3,4,5],
gueueing networks [6], hardware and software cigdes
to predict the average power consumption.

Our contribution in this paper is done by develgpthe
hierarchical generic FSM, converting it to a Marieov
model and also integrating it with its affiliategtkarchical
performance model (HPM) in order to estimate system
performance metrics such as power consumptioniare t
delay. Only power consumption is considered in this
paper. The developed framework was applied onlgroan
device due to the availability and presented witthiis
paper.

In the reminder of this paper, we present relatedkvon
power consumption estimation schemes in Section 2,
followed by a detailed discussion of the hierarahic
generic finite state machine (HGFSM) and its afféd
hierarchical performance model (HPM) to estimate th
power consumption. Section 4 includes a case stualy
applies the mapping scheme inside the framework and
evaluate its power and energy and also to determine
locations of bottlenecks. Section 5 concludes Hpep

Page | 1758

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-10, Oct- 2016]
ISSN : 2454-1311

Il. RELATED WORK
Functional Modeling techniques and Analytical Maaig!
ones are used to estimate the system performantiesne
such as power estimation at an early stage if plassi

Queueing schemes have been used since the 1970s to

model performance metrics of any software systeBhs [
An FSM is used to evaluate system level performance
[9,10,11]; however, that FSM was not applicableatyy
system since it was designed for a specific systsm.
designing a hierarchical generic FSM to be used in
evaluating performance for any embedded system is
developed in section 3. Many techniques were deeelo

to estimate the power consumption at gate-levetuit
level and register-transistor-level. However, those
approaches are impractical to evaluate power copisom
due to the lack of availability of circuit and gdtvels
information of a system under investigation. In, [@dwer
analysis was done based on Y-chart scheme by Amit
Nandi. He integrated power and performance anaiysis

the system level and claimed that the analysisrbecan
integral part of the design process as it helpefint a
proper architecture for a target application. Arafanmar

and Fergany in [8] applied the HPM method to euvelua
the software power consumption based on measurement
of the consumed power by each instruction. Theyned

that their approach can be used to estimate power
consumption of a software application based on ipays
measurements and computation modeling. In [13]idrap
performance and power consumption evaluations were
done at the system level only and that did notuitelthe
task level, module level and operations level. Kyriz&n
Attallah, Niar, Senn and Dekeyser in [14] preseradedst
and accurate hybrid power estimation methodology fo
embedded systems at the system level only and aid n
provide any information about more levels. Many lmoels
were developed to estimate the power consumptidiheat
system level only as in [15].

Numerous parameters are required for each layenwhe
using HPM to estimate the average power consumirtion
different levels; those parameters propagate frdrottom
level to a higher one [1,2,3]. Nevertheless, adngsthis
information within a level or communication of
information between these layers result in a corple
manner [3]. The HPM is used to manage and distibut
performance information between different layersthof
framework. This paper considers the problem of mapp

a functional modeling approach such as FSM to the
analytical (mathematical) modeling approach such as
(HPM) for performance analysis. A general overviefv
the developed framework using the functional maugli
approach HGFSM” which refers toHierarchicalGeneric
Finite State Machine and the analytical modeling

WWwWw.ijaems.com

approach KIPM) to estimate the power consumption is
depicted in figure 1.

Software and
Hardware Co-Design
' Markovian Model
Functional (Mapping Scheme) Analytical (Modeling)
(Modeling) P | Approach “HPM”
Approach 4
System Level
Hierarchical Generic —
” ntegrate
Hinite , Performance Model Task Level
State Machine
“HGFSM" Module
@ Level
Operation
Estimated Average Level
Power Consumption

Fig.1: developed framework

Hierarchical Generic FSM is designed and then cdese
into the Markovian Model “MM”. Each state in the
Markovian model is decomposed into another sub-
markovian states if possible. Furthermore, Hieraath
Performance Model “HPM” is applied to each state to
derive the expected average power consumption
equation(s) using bottom-up methodology which
represent(s) the objective function(s).

[l HIERARCHICAL GENERIC FINITE STATE

MACHINE AND HIERARCHICAL
PERFORMANCE MODEL

A typical FSM model is composed of 5-tuplés §, S, 5,

F}; where: Y represents a set of input alphabets. S

represents a set of states in the modgkefresents an

initial state or a set of states which are sub-el@mof S5

represents a state-transition function which magis/den

a current state to a next state and F containwadtate or

a set of states which belongs to S [9,10]. A taslany

embedded system can be classified as either cadpbet

failed. A set of states exists among those twoestéd

form the hierarchical generic FSM “HGFSM” model as

shown in fig. 2 [1,2].
/”\\ ;/\
)_n Completed \
X \-//

ey |nitial sep Checking Processing

& suspend)| | Waiting) ’ L/
K/ — Sub-FSM
3 A
Sub-FSM
Sub-FSM
Fig. 2: Hierarchical generic FSM
Page | 1759

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-10, Oct- 2016]
ISSN : 2454-1311

Each input alphabet is represented by a task @t afs
tasks which are integrated to form a desired job.
Movement from a current statg ® a next state ;9s
represented by a transition arrow and is done doupto
some existing circumstances or activities insigesystem
under investigation. For the hierarchical genel®8ME S
contains all 7 states whereag @ntains only one state
which is the Initial state. F contains one statdctvhis
named as completed state, referring to a successful
completion, and is denoted by two circles in fig. 2

The states are: Initial stateach task is provided with an
arrival time €,) and a deadline timéqj which refer to one

of the constraints in the systeffhere is no transition
when the system is idle which means there is no
incoming task Checking statat performs several tasks:

» Checks if the task deadline can be met or not; if
not, it forwards the task into the Failed state to
restart its cycle. Otherwise, it moves to a next
condition.

» Checks available resources for execution; if not,
sends tasks to the Suspend state. Otherwise,
performs the next operation.

e Checks if the queue in the Execution state, which
is also called the Processing state as shown in fig
.2, is full or not; if not, then it forwards thesta
into the Execution “Processing” state. Otherwise,
it forwards it into the waiting state.

The state itself is decomposed into another sub-FSM
which contains 3 statefReceiving and checking state,
Decision State and Recording stateMore information
can be found in [1]The Execution “Processing as in fig.
2" state represents the place where the task is executed. If
the execution is done successfully, it sends thle tia the
Completed state. Otherwise, it sends it to theeHastate.
The execution is completed successfully if the aken
time (t) <= deadline time {. The state is decomposed
into another two sub-FSMs to form hierarchical maae
shown in fig. 2. In the Waiting statthe task waits its turn

to be executed once the queue of the Execution
“Processing” state is not full or the Processingt Ua.U.”
becomes available when the deadline time can be met
otherwise, the task is sent to the Failed stateestart its
cycle. The Suspend stateontains tasks for which their
computing resources are not yet available and tiseee
high chance to be executed once their resourcemsec
available while the deadline time can be met. Tlaeeel6
states in the developed HGFSM which form the cotaple
model. The HGFSM in fig. 2 can be remodeled by
including the Suspend state inside the Checkintge,sta
more information about it can be found in [1].

The hierarchical generic FSM is mapped to a Markov
model “MM” which represents a state diagram (a
component of HPM) [1,2]. The Markovian model has 3-

WWwWw.ijaems.com

tuples {S, A, P}, where S represents a set of statésted

in the HGFSM model. A denotes a vector of initial
probabilities values for all states in the modelilevtP
contains a matrix that represents transition pritiieb
among states according to some circumstances @xiste
the developed model. The mapping is done as folldws
Every state in the HGFSM is mapped to a statedriMM.

2. Each edge in the HGFSM is converted to a triansit
arrow g; which represents the flow direction from the
current state (Hto the next state (S 3. Each transition
arrow is associated with a parametgmwhich represents a
number of tasks that go from statg t& state S That
parameter is used to calculate the probability e/dhy
which denotes the possibility of moving from theremt
state (9 to the next state (Sand it is calculated using the
following equation, wher&l; represents a number of total
tasks in state;S

Pi =Kj I'N (1)

4. Each FSM graph and state is associated with its
Computation Structure Model “CSM” to show data flow
in the system under consideration. CSM helps in
constructing performance metrics equations. 5. If
applicable, a state is decomposed into anothe~S\-
and additional Markovian model is constructed teate
another level in the hierarchy. A figure for the idavian
model is not shown in this paper due to the space
limitation. However, the interested readers camdébonore
information about it in [1].

Performance modeling evaluation is considered tohbe
abstraction of the functional and performance
characteristics of the system under consideratioicware
combined to determine if it meets the performance
requirements based on a user demands and system
architectures [6,16]. The Hierarchical Performahtmdel
(HPM) layers are illustrated in figure 3. There drlayers

in fig. 3 which are used to derive the average powe
consumption and the average energy produced in the
system(s) under investigation.

System Level (Logical View): System
Power costs based on amival rate of

SVSIEM Leve' - task, service time of task and
intereommunication proparties
TaSk le‘o‘EI -— b Task Lewal (Physical Wiew): Task
Pawdr costs based on processor
Mﬂdl.lll! l-wel sharing and Interropt s
o vh, Module Leveh Software power costs
Opemﬂﬂn I.E'H'EI based on software structum,

operations cou and flow probabilities
Operation Laval: Primitive operation

Powar costs based on
Compiler/micraprocetsor anvironmaent

Fig. 3: Hierarchical Performance Model stack layers

Page | 1760

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-10, Oct- 2016]
ISSN : 2454-1311

V. CASE STUDY: ANDROID
Android software architecture is designed and baslts
stack structure as depicted in fifa) [18]

Applications

Mome | Contacts | Phone | Browser | Other

Appbcation Framework
Window Contort R g Viow .\‘_
Manager | \ Providers _1 Systam
Tokephony 1\ Resource \ | Locaton \‘I
Manager) Manager / | Manager /
Librarnes
Suface) 18 \ SOLse ﬁ\ Android Runtime
Ltanager /_- e y j e /r , \\
Core Lt
- N | Core Liba
OponGL | FronType ol
7 7
- Deivig -\l
Y Y,
M
Gl \f SL) oc | et
J J y
7 Daplay 7 Camorn Linux Kemel 7 Fash Hraer
_ Deiver __ Dehvet _Daves Drivee
" Keypad - Auga :) Powor
_Detvee Driver . Detve . Mgmt

Fig. 4(a): Android software architectu

All components of the 4 layers integrate with eattter to
form what is known today a#NDROID. Each layer
contains some blocks that integrate together ta det o
specific jobs. The 4 major layers “levels” in Anatdrom

bottom to up are: A. LINUX KRNEL, B. LIBRARIES
AND ANDROID RUNTIME, C. APPLICATION

FRAMEWORK and D. APPLICATIONS. Mor
information can be found in [18,19,20,2

Any application in Android is built based on 4 difént
components which are: 1- Activity, Zontent provider, -

Service and 4Broadcast receiver [19,20,21]. In Andrc
a task can be defined as an activity or a set tofites. A

typical lifecycle for any activity in Android has States
which are: OnCreate, OnStart, OnResume, OnP
OnRestart, OnStop and OnDestraipterested readers ¢
referred to [18,19] for more details about Andrdidble 1
illustrates the mapping between the HGFSM and

Android activity lifecycle.

WWwWw.ijaems.com

Table.1: Mapping HGFSM with the Android activ

lifecycle
Current Stats Nex: State
Activity lifecycle FSM Activity lifecycle FS\
OnCreate I nitial CnStar: Checking
Failed
N On3esume or .
OnStart Checking or Waiting cr
OnStop - .
- Sxecution
z
=
[N
Checking or
OnRestart Suspend or Failed anStar: Execution or
Failed
N = ti
OnResurme Exscuticn OnPausz .KECU |or‘|
{Abarted}
=xecution
= OnPause Executicn Cniesume or (Fieaddy/Ru)
= OnStop o
g Failed
N OnResza-tor Completed or
onsto Executicn p
P OnDeast oy Failed
N Completed or
OnDeastro Executicn | -----
i Failed
-
ES
=]
w
OonStcp Executicn OnRastart Failed

Fig. 4(b) shows a typical overview of how a task startd
runs on an Android device.

@ Task

Execution State

Initial State

(OnResume] Completed State

(OnCreate)

(OnDestroy)

Checking State
_______ (OnStart)
Waiting State

(OnStart)

Failed State

(OnRestart)

Fig. 4(b): Task execution in Andrc

In fig. 4(b), solid lines indicate the control floletweer
the states whereas the dashed lines indicate agetwa
is sent amongtates. Once the software processes, w
are displayed as the states, and the interface ages
between all states are known, our next step i®terohine
the performance parameters associated with thehg
These parameters argasks arrival rates &, number of

tasks exist in each state before processing them,

number of tasks move from the current state () to the

new state (9 Kj, flow probabilities P;, message
multipliers B, which are assumed to be unity, an
lastly the computation and communication cost
(service) times E(s) To utilize the performanc
parameters, at the early stage, we identify theit{sjp

output(s) and divide any Android system into dife
components if possible as shown in figure 4(c).r&tare

Page | 1761

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-10, Oct- 2016]
ISSN : 2454-1311

one input, one output, six componentmd action, one

sequence and four branchés
@ Task

1 Branch

1
I
Execution State ¥ d

Initial State
Completed State

(OnResume)

(OnCreate)

(OnDestroy)

Checking State

(OnStart)

Waiting State

(OnStart)

Failed State

(OnRestart)

Fig.4(c): System Components

To determine the probabilities values, we need riovk
how many tasks (JNexist first in each state and then how
many tasks (R out of N are sent from statg ® state S
all these numbers should be known in advance efifier
obtaining them from actual tests (experiments/satnoih)
or given by the designers. Several experiments were
performed in order to obtain the values for diffare
performance parameters to estimate the expectedge/e
power consumption and/or energy produced. Table 2
shows the number of tasks exist in each state vihde
system under investigation is running. Note thag th
subscript indicates the state (ID). The system iwithis
paper will be represented by a smartphone, moreifgpe
Galaxy Note 3 is the system to be used and tested.

Table.2: Number of tasks in each state

Compl
Initial | Check | Wait| Execution Failegd ete
N, N, Ns N4 N5 Ns

The probability value Pis computed using equation (1);
the next step is to specify the details of the meshused

to derive the power consumption equation(s). The
software structure indicates the order in which the
operations are executed in order to complete aetetsk

or computation. The software structure can be ssethe
Computation Structure Method (CSM) which consists

of Data Flow Graph DFEGnd Control Flow Graph CEG
The DFG and CFG for the Android application are not
shown due to the space limitation. The intereseatiers
are referred to [1] for more information and DFGdan
CFG. To derive a cost equation, we multiply eacitest
cost with its associated flow parameter; then suim a
results. After substituting all dependent flows hwit
independent ones, the independent flows are thathwh
complete loop whereas the dependent flows are the

WWwWw.ijaems.com

remaining ones. The expected average power congurmpt
is computed as follows:
PCaverage:(l*Cinitial)+((1+e4)*(cchecIZ"Ctesa)"'((ell"'l)*Cdeci
sion)+((99+38)*(cwait+Ctesa)+((ell+1)*(Cexe+Ctesb (2)

PC stands for Power Consumption. To compute theggne
produced from the system, just multiply the refuolin eq.
(2) with a time {) spent to perform the desired jobs. In
equation (2), each parameter is associated witfidts
variable(s) which is/are denoted byEach flow variable
represents a value of moving through a path frostag
node to an end node in the CFG. Each flow takeslgev
between {0,1,...0p} and mainly depends on a type of
distribution [1,2]. The flows also represent thetada
dependent aspects of the computation time [1]. Tdrey
discrete random variables and are modeled using
probability distribution and statistics methods.vé&eal
probability distributions exist which are summadzas
follows: Bernoulli, Binomial, Geometric, Modified
Geometric and Poisson[1,2]. Given the probability
distribution type of e, several characteristics hsuas
Expected value E(e), second moment ’E(&/ariance
Var(e) and the coefficient of variation?Gare easily
obtained. More information about estimating theueal of
computations and communication aspects can be found
[1,3]. The value of &iq is determined from its CFG as
shown in fig. 5(a). From fig. 5(a), three operaticlake
place in every Android device which are: Assigningead
to perform a desired action, Variables initialinatiand
finally creating the Graphical User Interface tdenact
with a user.

/—R e:=1='1l
£y

L el

Create LA

fad B

Fig. 5(a): CFG for the Initial state
From fig. 5(a), the equation for estimating the rage
power consumption is computed as follows:
Cinitial = Ccreate ut CInitializaﬁions + Cassigning thread (3)
For the Executing “Processing” state, its costhtamed
from its CFG which is now shown due to the space
limitation; so

Cexecution = [(e 1+e4)*(C handling statd Cte59]+[e 4*Cabone(]
+[(1+e4)*Cres “4)
Page | 1762

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-10, Oct- 2016]
ISSN : 2454-1311

Substitute the value ofiGading stareWhich is obtained from
its CFG as depicted in fig. 5(b).

Chanding = [(1 + €3 + €6) * (Creagy + Cresd)] + (€3 * Cigie) +
[(€6+1)*Cies +(1*(C run)) ®)
Note that the cost value obtained for each staimesents
the expected power consumption which is used fer th
computation in a Node View in the system level [1].

5ol
fn ' L
% ,Al‘-
P N
* "\ Meadyniate Js
) LY
L1 £ %
4
’ "
; &
i = Test ¥

i Tewt
|
{-'ig’ &
Ched if the tnk i needed ¥es
oo L~ .
[®nsate)
Chack i the .U, i ready or &

it
fed @

Fig. 5(b): CFG of the Handling state
Next step is to find a number of visits V to eachates
which is computed using the following equation
V=(0-P)* (6)
Where [V] is a matrix whose elements indicate nundie
visits to each state; the number of its entriesjisal to the
number of states exist in the systeimis the identity
matrix and P is the matrix of transition probakabt
between all states. So the average cost becomes as
follows:
PC'clverage: Z(Vi*ci) (7)
Where i =1,........ ,6 which is the number of stateshia
framework; G indicates the value of cost associated with
each state.
Only one hardware architecture was used, due to the
availability reason, to profile different applicatis. A
profiler tool used to find the actual power constimpin
the smartphones is available only on limited desice
JAVA Eclipse is also used to estimate the values of
several performance parameters by performing neltip
experiments. The architecture refer to a Smartphome
with Android as O.S., which is: Galaxy Note 3 as
mentioned earlier. The applications used withins thi
profiling part range from a simple one like a Basic
Calculator to more complex one, which consumes more

WWwWw.ijaems.com

power from the P.U. such as Video RecordingFour
different applications were used including: 1. \Gde
Recording with Preview, 2. Calculator, 3. Audio
Recording, and 4. Picture Taking. The profiling vdasme
in three parts according to the developed HGFSMclwhi
are:

» Initial part (part one in the developed HGFSM):
represents the first stage toward finding the
average power consumption for a task. This stage
contains “Initial state” in the HGFSM and
“OnCreate” in the Android activity lifecycle.

» Check part (part one in the developed HGFSM):
represents the second stage and contains two
states which are (the Checking State and the
Waiting state in the HGFSM) and (OnStart) in
the Android activity lifecycle as shown in table 1.

» Run part (part two and three in the HGFSM):
represents the last stage and contains the
following states: Execution, Completed and
Failed as shown in table 1.

The aim of this profiling is to determine the exjget
average power consumption and to identify which par
the smartphone produces more energy. All applinatio
were tested several times (about 50 times) and then
average power is determined. In the architectutdpar
applications were installed and then the profilsigrted
by launching them one by one. For flows in equati(®)
to (5), they occur in a single run of “if statenfeahd we
assume equally likely for a branch to be taken sogp=
0.5 since p + g = 1 as stated earlier.

Finding the number of visits in each state is deteed
using Matlab and then substituting in equation \{&)
give the expected average power cost as follows;
E(PC)Z(l*Cinitial)+(E(1+e4)*(cchecIZ"Ctesa)"'(E(ell"'1)*Cde
cision)+(E(69+98)*(Cwait+ctesb)+(E(ell+1)*(cexe+Ctesb (8)

E refers to Expected average value, so the avenggy
produced is calculated using the following equation
E(energy) = E(Power) * t 9)
Where t represents the period of time taken to then
applications and it is fixed to be 45s = 45000mn&blés 3
shows the actual values and expected ones for power
consumption for all 4 applications in Note 3.

Table.3: actual and expected power consumptionoite N

3
L Actual
Application | Expected ctua
Name power (mw) Power Error
(mw)

Video 2.215 1.997 10.92%
Calculator 1.743 1.856 6.09%
Audio 2.189 1.972 11%
Taking 2.206 2.033 8.51%

Picture
Page | 1763

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-10, Oct- 2016]
ISSN : 2454-1311

The difference between the expected and actuabgser
power consumption lays within a small error “+118 a
shown in table 3. Table 4 illustrates the actual #me
expected average energy produced in Note 3 in joille
“mj”; all values are scaled by 10

Table.4: expected and actual energy produced ire [Sot

Table.5: List of primitive operations and their aage
power consumption values

List of primitive
. Average value
operations
Function call 0.0437
Addition 0.119
Subtraction 0.147
Multiplication 0.492
Division 0.687

Application | Expected Actual Error
Name Energy (mj)| Energy(mj)

Video 99.675 89.865 10.92%
Calculator 78.435 83.52 6.09%
Audio 98.505 88.74 11%
Taking 99.27 91.485 8.51%

Picture

Fig. 6 shows the actual and expected energy pradince
Note 3 by all four applications with scale by*10

Energy produced in Note 3 in mj

100
90
80
70
60
50
40
30
20
10

Video Calculator Audio Taking

Picture

M Expected Energy M Actual Energy
Fig. 6: expected and actual energy in Note 3

Samsung tried to minimize the energy produced $n it
devices and Note 3 yields less than expected daamrmgh
that several applications were already installed ram on

it. During the experiments, several applicationsa mn
Note 3 and caused he energy to be higher than the
expected. Also the initial state, which includewvesal
activities (assigning thread, variables initialiaas and
creating the GUI), consumes more power than the
remaining states. In general, the Note 3 device is
optimized in terms of the power consumption and the
execution time as proofed by the experiments. Té&ble
illustrates the average values for several primgiv
operations in Samsung Galaxy Note 3 after perfagmin
different experiments. All values are in milli wathw”

and were obtained after repeating the experimerise m
than 45 times.

www.ijaems.com

Fig. 7 illustrates the average power consumptiatuéd
and expected) in Galaxy Note 3 using two benchmark
applications. The two benchmark applications are
Mobibench and Norvigtorious, both of them can benfib
and downloaded from Play Store or from Github. They
were tested and ran several times to estimatevibage
values.

278 1.769

174 1.732

1.684

1.645

Power in mw

Mobibench Norvigtorious

m Samsung Note 3 Actual B Samsung Note 3 Expected

Fig.7: Average power consumption in two benchmarks

In each benchmark application, the first bar refershe
actual average power consumption while the secamd b
represents the estimated average values.

V. CONCLUSION
This paper presented the developed framework to
estimate the expected average power consumption and
energy in smartphones which incorporated diffetevils
of abstraction. Two examples were given to dematestr
how the power and energy are estimated using the
software structure and the architecture to repteten
corresponding levels of the model. The framework loa
applied on any smartphone to estimate the expected
average values for the power consumption and theggn
produced. The future work is to determine the ayera
power dissipation and energy consumed with a device
runs on multiple threads “up to three threads” fumd the
effect of rendering GPU(s) to take control on dreat
graphical task(s) such as drawing the Ul windowchtis
found to be the dominant factor. It takes about @W%e
average power cost in the Initial state.

Page | 1764

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-10, Oct- 2016]
ISSN : 2454-1311

REFERENCES
“High Performance Embedded
Dissertation, University of

[1] A. Alsheikhy,
System”, Doctoral
Connecticut, 2016.

[2] A. Alsheikhy, S. Han and R. Ammar, "Hierarchical
Performance Modeling of Embedded Systems®,
Computers and Communication (ISCC), 2015" 20
IEEE Symposium on Computers and
Communications, pp. 936-942, July 2015.

[3] A. Alsheikhy, S. Han and R. Ammar, "Delay and
Power Consumption Estimation in Embedded
Systems Using Hierarchical Performance Modeling”,
15" |EEE International Symposium on Signal
Processing and Information Technology (ISSPIT),
pp. 34-39, December 2015, Abu Dhabi, UAE.

[4] A. Nandi, “System-Level Power/Performance
Analysis for Embedded Systems Design”, Master
Thesis, Carnegie Mellon, 2002.

[5] L. Chin, .S. Wei and G. Yu, "Performance
Evaluation of Embedded System Based on Behavior
Expressions”, %' International Conference on
Mechanical and Electronics Engineering (ICMEE),
Vol. 1, pp. 253-256, 2010.

[6] D. Smarkusky, R. Ammar, |. Antonios and H. Sholl,
“Hierarchical Performance Modeling for Distributed
System Architectures,” Computer and
Communications, 2000. Proceedings. ISCC 2000.
Fifth IEEE Symposium, pp. 659-664, July 2000.

[71 R. Ammar, “Software Performance Analysis,”
lecture notes, University of Connecticut, 1991.

[8] H. Arafat, R. Ammar and T. Fergany, “Evaluating
Software’s Power Consumption”, Paper Version,
University of Connecticut.

[9] B. Lee and E. A. Lee, “Interaction of Finite State
Machines and Concurrency Models”, Proceeding of
Thirty Second Annual Asilomar Conference on
Signals, Systems and Computers, Pacific Grove,
California, November 1998.

[10]A. Stan, N. Botezatu, L. Panduru and R. G. Lupu, “A
Finite State Machine Model Used in Embedded
Systems Software Development,”, pp. 51-63, 2009.

[11] B. Lee and E. A. Lee, “Hierarchical Concurrent
Finite State Machines in Ptolemy,”, Proceeding of
International Conference on Application of
Concurrency to System Design, pp. 30-40,
Fukushima, Japan, March, 1998.

[12] M. Sarrafzadeh, F. Dabiri, R. Jafari, T. Massad
A. Nahapetian, “Low Power Light-Weight
Embedded Systems”, Proceedings of the
International Symposium on Low Power Electronics
and Design (ISLPED), pp. 207-212, Oct. 2006.

[13] S. Niar and N. Inglart, “Rapid Performance and
Power Consumption Estimation Methods for

WWwWw.ijaems.com

Embedded System Design”, Proceedings of tHe 7
IEEE International Workshop on Rapid System
Prototyping (RSP), 2006.

[14] S. Kumar, R. B. Attallah, S. Niar, E. Senn ahd..
Dekeyser, “Fast and Accurate Hybrid Power
Estimation Methodology for Embedded Systems”,
Conference on Design and Architectures for Signal
and Image Processing (DASIP), IEEE, pp. 1-7, 2011.

[15] S. Kumar, O. Palomar, O. Unsal, A. Cristal, BR.
Attallah and S. Niar, “PETS: Power and Energy
Estimation Tool at System-Level”, 8nternational
Symposium on Quality Electronic Design (ISQED),
pp. 535-542, 2014.

[16] J. Viskari, R. Jokinen and K. Hakkarainen, “A
Generic FSM Interpreter for Embedded Systems,”,
proceedings of IEEE EURWRTS, pp. 284-289, 96.

[17] L. Carmichael, A. Warner, FNAL and Batavia, “A
Generic Finite State Machine Framework for the
ACNET Control System,”, proceedings of
ICALEPCS, pp. 28-30, Kobe, Japan, 2009.

[18] Z. Wang and A. Stavrou, “Google Android Platfo
Introduction to The Android API, HAL and SDK,”,
lecture notes, George Mason University.

[19] V. Matos, “Android Multi-Threading,” Notes on
Android, Chapter 13, Cleveland State University.

[20] X. Ma, “Android OS,”, lecture notes, CSE 1Zxll
2010.

[21] S. Brahler, “Analysis of The Android Architece,”,
master thesis, Karlsruher Institute for Technology,
October 2010.

[22] K. Reddy, S. Baragada, D. S. Kumar and B. &éiR
“Software Performance Evaluation of a Polar
Satellite Antenna Control Embedded System,”,
International Journal of Application or Innovatiom
Engineering and Management (IJAIEM), Vol. 2. NO.
1, pp. 166-173, January, 2013.

Page | 1765

