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Abstract— Artificial Intelligence (Al) is rapidly transforming the architecture and performance of global
supply chains. The convergence of data-rich operations with machine learning (ML), reinforcement learning
(RL), and generative large language models (LLMs) enables unprecedented levels of automation, foresight,
and adaptability in supply chain management (SCM). This paper synthesizes recent literature (2023-2025)
to examine how Al technologies reshape core SCM functions, forecasting, inventory optimization, logistics
routing, procurement, and risk management, while identifying the governance and organizational challenges
that shape adoption outcomes. Findings indicate that Al integration delivers measurable efficiency and
resilience gains but also introduces new risks related to data interoperability, explainability, cybersecurity,
and ethical governance. A governance-first operating model is proposed, emphasizing transparency, human
oversight, and regulatory compliance as key enablers of sustainable Al deployment. The study concludes
with a phased implementation roadmap and a future research agenda focused on responsible,
interdisciplinary innovation at the intersection of Al and SCM.
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L INTRODUCTION

Global supply chains have become increasingly data-
rich and decision-intensive in the era of Industry 4.0.
The exponential growth in data from enterprise
systems, IoT sensors, and partner integrations has
made supply chain management (SCM) a prime
domain for artificial intelligence (AI) adoption (Culot
et al, 2024). Advances in machine learning (ML),
including time-series forecasting, reinforcement
learning, and, more recently, large language models
(LLMs), have redefined the frontier of real-time
decision-making in planning,
procurement (Cannas et al., 2024; Daios et al., 2025).

logistics, and
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Systematic reviews published in 2024-2025 reveal
accelerating integration of Al in demand forecasting,
inventory optimization, logistics routing,
procurement, and risk management. These studies
consistently report measurable performance gains
compared with traditional heuristic and statistical
methods (Douaioui et al.,, 2024; Aamer, 2020). For
instance, ML-based demand forecasting can reduce
mean absolute percentage error (MAPE) by 15-30%
compared to conventional autoregressive models
(Douaioui et al., 2024), while Al-enabled logistics
routing can improve fleet utilization and reduce fuel

consumption by up to 12% (Cannas et al., 2024).

Despite these benefits, Al adoption in SCM remains
constrained by organizational and societal challenges.
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Key among these is explainability and trust in model
outputs, bias mitigation in supplier or customer
segmentation, interoperability across legacy systems,
and compliance with emerging cybersecurity and Al
governance regulations (Wellbrock et al.,, 2025). As
such, the convergence of SCM and Al is not purely a
technical transformation but a broader management,
governance, and ethical challenge that requires
careful alignment between data science, operations
strategy, and policy frameworks (Simchi-Levi et al,,
2025).

II. METHODOLOGY: SYSTEMATIC
LITERATURE SYNTHESIS

This study employs a systematic literature synthesis
approach to consolidate current research and practice
on the convergence of Al and supply chain
management. The method follows the Preferred
Reporting Items for Systematic Reviews and Meta-
(PRISMA)
qualitative research synthesis.

Analyses guidelines, adapted for

Search and Selection:

Peer-reviewed publications from 2020-2025 were
retrieved from databases including ScienceDirect,
MDPI, Taylor & Francis, and SpringerLink. Search terms

combined  “artificial  intelligence,”  “machine
learning,” “supply chain,” “forecasting,” “digital
twin,” “risk management,” and “large language

models.”
Inclusion Criteria:

Studies were included if they (a) addressed Al
applications in at least one SCM function, (b) were
published in English, and (c) provided empirical
results or conceptual frameworks. Exclusion criteria
removed purely technical papers lacking managerial
or governance relevance.

Analysis:

A thematic coding process identified recurring
patterns across 73 qualified studies, grouped into five
categories: (1) forecasting and planning, (2) logistics
and control, (3) interoperability and data governance,
(4) Al ethics and regulation, and (5) emerging
generative-Al applications. The synthesis informed
both the opportunity mapping and the governance
model proposed later in this paper.
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IIL. CONCEPTUAL FRAMEWORK: THE AI-
SCM CONVERGENCE MODEL

To visualize how Al interacts with SCM functions, this
paper introduces the AI-SCM Convergence Model
(Figure 1). The model conceptualizes supply-chain
intelligence as a multi-layered ecosystem where -

1. Data Infrastructure Layer integrates IoT, ERP,
and external data through interoperable
standards (e.g., EPCIS 2.0).

2. Al Analytics Layer applies predictive
(ML/DL), prescriptive (RL), and generative
(LLM) models to decision domains such as
forecasting, logistics optimization, and
supplier management.

3. Governance and Ethics Layer ensures model
explainability, bias mitigation, cybersecurity,
and regulatory alignment (e.g.,, EU Al Act,
NIST AI RMEF).

4. Human-AI Collaboration Layer places
human planners as overseers, interpreters,
validators,

and decision ensuring

accountability and adaptive learning.

This framework emphasizes that value emerges not
from Al automation alone but from the interaction
between data, algorithms, governance, and human
insight. It highlights feedback loops among
prediction, decision, and learning, positioning
governance as the central integrative force.

Human-Al Collaboration Layer
Human Planners

Governance and Ethics Layer
A Explainability Bias Mitigation
Cybersecurity Regulation

Al Analytics Layer
Predictive (ML/DL) Preseriptive (RL)
Generative (LLM)

Data Infrastructure Layer
loT
ERP External Data

Fig.1. AI-SCM Convergence Model

Page | 200


https://ijaems.com/

Nawrin et al.

IV. BACKGROUND: WHERE AI TOUCHES
THE SUPPLY CHAIN

4.1 Forecasting and Planning

Forecasting is one of the most mature and high-impact
applications of Al in supply chain management
(SCM). Modern reviews demonstrate that machine
learning (ML) and deep learning (DL) models —such
as gradient boosting, long short-term memory
(LSTM), and Transformer architectures — outperform
traditional methods like ARIMA and exponential
smoothing, especially when external (exogenous) data
sources are integrated (Douaioui et al., 2024). These
models capture nonlinear relationships between
variables such as promotions, seasonality, and
macroeconomic trends, leading to significantly
improved forecast accuracy. Douaioui et al. (2024)
conducted a comprehensive review of ML and DL
models for demand forecasting and found that hybrid
models integrating temporal features and external
covariates yielded an average 15-30% improvement in
Mean Absolute Percentage Error (MAPE) over
statistical baselines. Similarly, Gabellini et al. (2024)
applied deep neural networks using macroeconomic
indicators to predict delivery-delay risks in
automotive supply chains, achieving higher precision
and recall compared to conventional regression
models. These findings suggest that the integration of
Al-based forecasting models contributes directly to
service-level improvement, inventory reduction, and
planning accuracy.

4.2 Execution and Control

Al is increasingly integral to the execution and control
layers of the supply chain, especially through the use
of digital twins (DTs). Digital twins are virtual
representations of physical assets, systems, or
processes that are continuously updated with real-
world data through IoT telemetry and simulation
models. They enable real-time visibility, predictive
maintenance, and “what-if” scenario analysis (Roman
etal., 2025). In a systematic review, Roman et al. (2025)
found that digital twins, when combined with Al,
enhance operational resilience by simulating supply
network disruptions before they occur. Similarly, Guo
(2025) emphasizes the role of DTs in lean supply-chain
management, demonstrating how Al-enhanced
simulations improve production planning, bottleneck
detection, and capacity utilization. These studies
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underline how Al-driven digital twins transform
execution systems from static monitoring dashboards
to dynamic, decision-support platforms capable of
adaptive reconfiguration in response to external
shocks.

4.3 End-to-End Visibility

End-to-end visibility is foundational for Al integration
in SCM. Without standardized, interoperable event
data, even the most advanced Al systems lack reliable
input. The GS1 EPCIS 2.0 (Electronic Product Code
Information Services) standard enables companies to
capture and share supply-chain event data, what,
when, where, and why an event occurred, across
organizational boundaries (GS1, 2022). EPCIS 2.0
builds a unified data layer upon which Al algorithms
can learn and act. By providing consistent vocabulary
for events (e.g., object identification, transformation,
aggregation), this standard facilitates Al applications
in traceability, anomaly detection, and sustainability
reporting (GS1 US, n.d.). According to GS1 (2022),
such visibility supports not only compliance and
transparency but also predictive and prescriptive
analytics — Al can, for instance, anticipate disruptions
and autonomously suggest alternative logistics routes
or suppliers.

4.4 LLMs in Operations

Large Language Models (LLMs) and generative Al
represent the newest frontier in SCM applications.
Beyond forecasting and control, LLMs are being used
to translate natural-language business intents into
mathematical optimization tasks. For example, supply
planners can prompt an LLM-based system with
“optimize next week’s shipment plan given a 20%
increase in demand,” and the model can interpret the
command, query relevant databases, and generate
prescriptive outputs (Simchi-Levi et al., 2025). Daios
et al. (2025) describe how generative Al and LLMs are
transforming SCM operations by automating
information synthesis, report generation, and scenario
analysis. Early evidence suggests that integrating
LLMs with planning systems can compress decision
cycles from days to minutes, while improving
interpretability = and  human-Al  collaboration
(Menache et al., 2025). Although challenges remain,
such as hallucination risk and limited domain-specific
grounding, LLMs are expected to become integral
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components of Al-enabled supply-chain control
towers.

V. OPPORTUNITIES AT THE SCM-AI
FRONTIER

5.1 Predictive and Prescriptive Planning

The integration of Al in supply chain planning creates
measurable advantages in forecasting accuracy,
resource utilization, and overall responsiveness.
Modern supply chains are shifting from reactive to
predictive and prescriptive modes of decision-making
through the use of machine learning (ML) and deep
learning (DL) models. According to Culot,
Nassimbeni, and Orzes (2024), Al-driven forecasting
and optimization tools outperform traditional
statistical methods, particularly when exogenous
variables such as promotions, weather, and market
indices are included. Douaioui et al. (2024)
demonstrated that hybrid ML-DL forecasting models
can reduce forecasting error (MAPE) by up to 30
percent relative to ARIMA and exponential
smoothing models. These improvements cascade
downstream to inventory optimization, production
scheduling, and replenishment accuracy. In addition,
Cannas et al. (2024) identified that prescriptive
analytics systems—built on reinforcement learning
and simulation—enable dynamic, data-driven
adjustments to procurement and logistics strategies,
generating significant cost reductions and service-
level improvements. Together, these findings point to
a structural opportunity: predictive Al enhances
foresight while prescriptive Al transforms insight into
near-autonomous action, resulting in faster, more
reliable planning cycles.

5.2 Digital Twins for Resilience

Al-enabled digital twins (DTs) represent a
transformative tool for enhancing supply-chain
resilience and agility. A digital twin is a virtual
representation of a supply network that continuously
ingests loT telemetry and operational data to mirror
real-world processes (Roman et al., 2025). This digital
mirror allows planners to simulate “what-if”
scenarios—such as  port closures, supplier
disruptions, or demand surges—and evaluate their
impacts before they occur in reality (Guo, 2025).
Empirical research shows that integrating Al with DTs

improves disruption response time and network

https:/ /ijaems.com/

International Journal of Advanced Engineering, Management and Science, 11(6) -2025

efficiency. Sunmola et al. (2024) found that Al-driven
DTs enabled early detection of supply shocks and
optimized resource reallocation in a semiconductor
supply-chain case study. The convergence of Al,
simulation, and loT data thus empowers proactive
risk management, continuous learning, and system-
wide optimization—key pillars of resilient supply-
chain design.

5.3 Generative Al and LLM Copilots

Generative Al and large language models (LLMs)
mark a new era in SCM decision-support. These
systems can interpret natural-language business
intents and translate them into executable
optimization or simulation models (Simchi-Levi et al.,
2025). For example, a planner can request “generate a
replenishment plan minimizing transport cost under
95 % service level constraints,” and the LLM can
produce solver-ready formulations or data-driven
recommendations (Menache et al., 2025). According to
Daios, Papaioannou, and Koukoumialos (2025), LLM
copilots improve knowledge retrieval, automate
reporting, and assist in supply-planning and
procurement decisions by synthesizing structured
and unstructured data. Early case studies show that
organizations implementing generative-Al copilots
reduced planning-cycle times by up to 60 percent
while maintaining or improving key operational
metrics (Aghaei et al., 2025). These findings highlight
the potential for human-AI collaboration to increase
agility and cognitive capacity in complex global
supply networks.

5.4 Real-World Momentum

Industrial adoption of Al in supply-chain operations
is accelerating. Foxconn, for example, launched
“FoxBrain,” a domain-specific large language model
designed to optimize manufacturing and logistics
decisions in real time (Reuters, 2025). Similarly,
multinational retailers and manufacturers are
embedding Al copilots into their control-tower
systems to automate routine exception handling,
inventory balancing, and scenario forecasting
(Menache et al., 2025). Such deployments underscore
a key insight: the convergence of SCM and Al is not
only improving operational efficiency but also
redefining competitive advantage through speed,
resilience, and decision quality.
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VL STRUCTURAL CHALLENGES
6.1 Data Readiness and Interoperability

A fundamental challenge in integrating Al into
supply-chain management (SCM) is data readiness,
including completeness, quality, and interoperability
across partners. Most Al models require extensive,
high-granularity, and standardized data streams to
function effectively, yet global supply chains remain
characterized by siloed enterprise resource planning
(ERP) systems and inconsistent event-logging
practices (Culot et al., 2024). Zhu, Xin, and Trinh
(2025) identified persistent data-quality issues such as
latency, inconsistency, and missing event metadata,
showing that even minor degradation (= 5 %) in data
accuracy can reduce Al-model performance by up to
20 %. Likewise, the Brookings Institution (2022)
emphasizes that “data quality,
interoperability, and immediacy” are central barriers

availability,

to building shared visibility across multi-tier supply
chains. Adoption of global interoperability standards
such as GS1 EPCIS 2.0 mitigates some of these
challenges by defining event semantics (what, where,
when, why) that AI systems can learn from
consistently. However, aligning legacy infrastructures
to these standards remains costly and time-
consuming.

6.2 Explainability, Bias, and Fairness

As Al systems increasingly influence procurement,
routing, and capacity decisions, explainability and
bias mitigation emerge as core governance
requirements. Highly complex neural-network
models, though accurate, often behave as “black
boxes,” limiting user trust and accountability (Kosasih
et al, 2023). In a review of explainable-Al (XAI)
applications in SCM, Kosasih et al. (2023) found that
lack of interpretability remains a major reason firms
hesitate to deploy Al in operational planning.
Furthermore, bias in training data can reinforce
historical inequities, such as favoring large or
incumbent suppliers (Wellbrock et al., 2025). Without
transparency and fairness audits, Al adoption may
inadvertently undermine ethical sourcing and
diversity goals. Explainable-Al techniques (e.g.,
SHAP, LIME, counterfactual reasoning) and
neuromyotonic architectures are therefore critical to
ensuring that SCM decision models remain
accountable and interpretable.
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6.3 Cybersecurity and Regulatory Exposure

As digital supply chains become hyper-connected,
cybersecurity and regulatory exposure intensify.
Every new APl sensor, or Al model endpoint
broadens the attack surface for cyber threats
(SupplyChainBrain, 2023). According to the same
analysis, smart supply-chain infrastructures must
balance automation benefits with stronger data-
integrity and authentication mechanisms. On the
regulatory front, multiple frameworks are converging
on Al oversight. The EU Artificial Intelligence Act
(2024) introduces obligations for high-risk Al systems,
including those in critical-infrastructure and logistics
sectors, mandating continuous risk-management and
transparency (European Commission, 2024). In the
United States, the SEC Cybersecurity Disclosure Rule
(2023) requires publicly traded firms to report
material cyber incidents within four business days —
directly affecting Al-enabled control-tower systems
that rely on external data feeds (U.S. Securities and
Exchange Commission, 2023). Consequently, secure
Al architecture, regulatory compliance, and robust
incident-response planning have become integral to
sustainable SCM digitalization.

6.4 Talent, Operating Model, and Change
Management

Even when data and technology are in place,
organizational readiness can limit Al success. Many
firms face shortages of professionals proficient in both
SCM processes and data science (Raj, 2024).
Functional silos and legacy thinking impede the cross-
functional collaboration necessary for Al adoption. Al
integration changes traditional planner roles from
manual execution to policy-design and exception-
Without
management programs and continuous training,

management. structured change-
human-AlI collaboration may fail to deliver expected
performance improvements (Wellbrock et al., 2025).
As Cannas et al. (2024) note, aligning Al capabilities
with organizational culture and incentives is as critical

as the underlying algorithms.

VIIL. A GOVERNANCE-FIRST OPERATING
MODEL

7.1 Overview

As Al adoption accelerates across supply-chain
functions, the need for robust governance grows
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correspondingly. Without structured oversight, even
high-performing algorithms can produce biased,
insecure, or non-compliant outcomes. A governance-
first operating model therefore treats Al not merely as
a technology stack but as a regulated socio-technical
system that aligns data, algorithms, and human
judgment within transparent boundaries (NIST, 2023;
European Commission, 2024). This model requires
organizations to institutionalize clear policies for data
provenance, model development, validation,
deployment, and post-deployment monitoring, each

governed by explicit accountability structures.
7.2 Data and Interoperability Foundations

Effective governance begins with trusted data. The
GS1 EPCIS 2.0 standard provides a common event-
level vocabulary enabling cross-partner data
exchange, critical for Al training and traceability (GS1,
2022). EPCIS defines the what, where, when, and why of
product events, forming a foundation for end-to-end
analytics and  automated  decision-making.
Organizations adopting EPCIS 2.0 in tandem with
internal data-governance frameworks such as
ISO/IEC 38507:2022 (IT Governance of Al) can
harmonize operational data with compliance
requirements (ISO, 2022). This dual alignment ensures
that Al models operate on accurate, interoperable, and

ethically sourced data.
7.3 Al Risk-Management Frameworks

The NIST Al Risk Management Framework (RMF 1.0)
offers a structured model built around four core
functions —Govern, Map, Measure, Manage —that
translate abstract Al risks into operational controls

(NIST, 2023).

e Govern: Define Al roles, responsibilities, and
documentation standards.

e Map: Identify and categorize Al use cases
based on risk exposure and potential impact.

e Measure: Evaluate model performance,
explainability, fairness, and cybersecurity.

e Manage: Continuously monitor Al systems,
retrain when drift occurs, and enforce
accountability mechanisms.

When combined with supply-chain quality-
management systems (e.g., ISO 9001:2015), the NIST
Al RMF enables Al initiatives to meet both
performance and compliance objectives.
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7.4 Regulatory Alignment and Compliance

Globally, regulatory frameworks are converging on
risk-based Al governance. The EU Artificial
Intelligence Act (Regulation (EU) 2024/1689) classifies
supply-chain-related Al systems—such as logistics
optimization, predictive maintenance, and quality
inspection—as high-risk applications subject to
stringent obligations, including data-governance,
transparency, and human oversight requirements
(European Commission, 2024). In the U.S., the SEC
Cybersecurity Disclosure Rule (2023) obliges publicly
traded companies to report material cybersecurity
incidents, encompassing Al-related breaches that
could affect supply-chain continuity (U.S. Securities
and Exchange Commission, 2023). Adopting a
governance-first model ensures compliance readiness
under both regimes by integrating AI documentation,
audit trails, and impact assessments into everyday
SCM processes.

7.5 Security-by-Design

Embedding security into the Al lifecycle —Security-
by-Design—is another pillar of governance. Secure
data pipelines, encrypted model endpoints, and strict
access controls reduce vulnerability to cyberattacks
(SupplyChainBrain, 2023). Organizations should
perform threat modeling for Al components (models,
APIs, digital-twin interfaces) and apply adversarial
testing to detect data poisoning or model
manipulation (CISA, 2024). The combination of Al-
specific and traditional IT controls strengthens both
resilience and regulatory posture.

7.6 Human-AlI Collaboration and Accountability

A governance-first framework mandates human
oversight throughout the Al lifecycle. Humans remain
accountable for critical supply-chain decisions, while
Al serves as a decision-support system rather than a
decision-maker. Menache et al. (2025) and Simchi-Levi
et al. (2025) argue that planners should evolve into
scenario curators who interpret model outputs,
question anomalies, and apply contextual judgment
before execution. Clear audit logs and explainability
dashboards enable accountability when outcomes
deviate from expected performance.

7.7 Implementation Roadmap

A pragmatic implementation approach can be
structured into three phases:
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1. Foundation (0-3 months):

o Conduct Al and data-governance
audits.

o Identify priority Al use cases and
map them to NIST RMF categories.

o Begin EPCIS 20 event data
integration for key suppliers.

2. Operationalization (3-9 months):

o Establish Al oversight committees
and model-validation protocols.

o Integrate explainability tools (e.g.,
SHAP, LIME) for high-impact
models.

o Initiate staff training in ethical Al and
change management.

3. Institutionalization (9-18 months):

o Conduct third-party audits for
compliance (EU AI Act or ISO
standards).

o Implement continuous monitoring,
retraining, and bias-mitigation loops.

o Develop transparency reports for
internal and external stakeholders.

VII. IMPLEMENTATION ROADMAP (12-18
MONTHS)

Translating a governance-first strategy into
measurable outcomes requires a phased roadmap that
balances experimentation with compliance. Successful
implementations of Al-enabled supply-chain systems
emphasize incremental rollout, cross-functional
collaboration, and continuous evaluation against both
performance and ethical benchmarks (Culot et al.,

2024; NIST, 2023).
8.1 Phase 1 - Foundations (0-3 Months)

Objectives: Establish structural readiness, baseline
governance, and data interoperability.

e Al Governance Audit: Assess the maturity of
existing Al and data-management processes
relative to the NIST AI RMF (NIST, 2023).
Identify high-risk or opaque models in
forecasting, procurement, and logistics.

e Data Inventory and Standardization: Conduct
a gap analysis for EPCIS 2.0 adoption,
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focusing on event-level capture of “what,
where, when, and why” across internal
systems (GS1, 2022).

e Ethics and Compliance Setup: Align internal
policies with ISO/IEC 38507:2022 and the EU
Al Act (2024) to define accountability,
documentation, and human-oversight
protocols (ISO, 2022; European Commission,

2024).
Expected Outcomes:

e A clear inventory of Al assets and associated
risks.

e A standardized event schema ready for
integration with partner systems.

e A defined ethical and regulatory governance
framework.

8.2 Phase 2 - Pilot and Scale (3-9 Months)

Objectives: Deploy controlled pilots and embed
monitoring mechanisms.

e Pilot Use Cases: Launch Al pilots in demand
forecasting or inventory optimization to
validate improvements in forecast accuracy,
service level, and cost metrics (Douaioui et al.,
2024).

e Digital Twin Deployment: Implement a
limited-scope digital-twin model for a
production line or logistics corridor,
integrating IoT telemetry and reinforcement-
learning controls (Roman et al., 2025).

e Explainability Tools: Integrate SHAP or LIME
frameworks to evaluate model transparency

and document decision pathways (Kosasih et
al., 2023).

e Workforce Training: Introduce upskilling
programs in data literacy, bias recognition,
and model-interpretation for planners and
procurement professionals (Raj, 2024).

Expected Outcomes:

e Verified performance uplift (e.g, > 15 %
reduction in forecast error).

e Operational proof-of-concept for real-time
digital-twin analytics.

e Trained personnel capable of auditing Al
decisions.
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8.3 Phase 3 - Institutionalization (9-18 Months)

Objectives: Expand coverage, embed continuous-
improvement loops, and formalize compliance.

e Enterprise-Wide Integration: Extend EPCIS
2.0 event capture to tier-1 suppliers and
logistics partners (GS1, 2022).

e Continuous Monitoring: Implement model-
drift detection and retraining protocols in
accordance with NIST AI RMF “Manage”
function (NIST, 2023).

e Independent Audits: Conduct third-party
reviews to ensure compliance with the EU Al
Act’s transparency and human-oversight
provisions (European Commission, 2024).

e Sustainability and Reporting: Integrate
environmental and social metrics into Al
dashboards to align with ESG reporting
frameworks (Cannas et al., 2024).

Expected Outcomes:

e Institutionalized Al governance is integrated
into SCM processes.

e Continuous assurance of compliance and
cyber-resilience.

e Demonstrable improvement in agility,
sustainability, and trust.

8.4 Key Success Factors

Empirical and practitioner literature highlights three
recurring success determinants:

1. Cross-Functional Leadership: Governance
boards combining operations, IT, compliance,
and ethics perspectives accelerate adoption
while minimizing risk (Menache et al., 2025).

2. Iterative Learning Culture: Regular post-
implementation reviews capture lessons and
recalibrate algorithms for evolving business
contexts (Culot et al., 2024).

3. Stakeholder
explainable logs and transparent performance

Transparency:  Maintaining
dashboards builds long-term trust among
regulators, partners, and customers

(Wellbrock et al., 2025).
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IX. RESEARCH GAPS AND FUTURE
DIRECTIONS

9.1 Theoretical and Conceptual Integration

Despite rapid technological progress, the theoretical
integration of Al  within SCM
underdeveloped. Most empirical studies emphasize

remains

technical performance—forecast accuracy, routing
efficiency, or cost reduction—without connecting
established

management theories such as the resource-based view

these  outcomes to operations-
(RBV) or dynamic capabilities framework (Culot et al.,
2024; Cannas et al., 2024). Future research should link
Al capability maturity to competitive advantage
through longitudinal and multi-industry studies.
Building conceptual models that integrate Al
governance, supply-chain resilience, and
organizational learning would help explain why
adoption trajectories differ across sectors (Kamble et

al., 2024).
9.2 Data Ecosystems and Federated Learning

A persistent limitation is the lack of data sharing
across organizational boundaries. Supply-chain data
remain fragmented by proprietary standards, privacy
concerns, and competitive barriers (Brookings
Institution, 2022). Emerging methods such as
federated learning (FL)—which allows multiple
organizations to train models collaboratively without
centralizing data—offer a promising research
direction. Recent work by Hsu et al. (2025) shows that
FL improves demand-forecasting accuracy by
aggregating models across suppliers while
maintaining data sovereignty. Yet issues of
interoperability, trust, and incentive alignment
remain unresolved. Scholars could explore multi-party
computation and blockchain-assisted FL as enablers of
secure, collaborative Al ecosystems.

9.3 Explainability, Fairness, and Human-AI
Interaction

While progress has been made in explainable AI (XAI)
for SCM, challenges persist in aligning explanations
with the cognitive needs of planners and executives
(Kosasih et al., 2023; Wellbrock et al., 2025). Current
research often evaluates explainability quantitatively
(e.g., SHAP feature importance), yet qualitative
understanding —how users interpret, trust, and act on
explanations —remains underexplored. Future studies
should combine human-factors research with model-
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governance frameworks to assess the behavioral
impacts of Al transparency. Experimental research
could also investigate how Al-augmented decisions
influence negotiation, collaboration, and ethical trade-
offs within global supply networks.

9.4 Generative Al and Cognitive Automation

The surge of Generative Al (GenAl) and Large
Language Models (LLMs) introduces new possibilities
for cognitive automation in supply chains. Early pilots
show that LLMs can synthesize unstructured data,
automate documentation, and support decision
reasoning (Simchi-Levi et al., 2025; Menache et al.,
2025). However, these systems face risks of
hallucination, context loss, and bias amplification.
Current literature lacks rigorous benchmarks for
evaluating GenAl models in SCM contexts (Aghaei et
al., 2025). Future research should establish
performance metrics beyond accuracy —such as
reliability, interpretability, and ethical compliance —
and design domain-specific foundation models
grounded in verified industrial data.

9.5 Sustainability and Responsible Al

Although Al promises efficiency, its alignment with
sustainability ~and responsible innovation is
insufficiently studied. Few works quantify Al's
contribution to reducing carbon intensity, waste, or
social inequities in supply chains (Douaioui et al,,
2024). As regulators increasingly emphasize ESG
reporting, future research must examine how Al can
operationalize sustainability goals—by optimizing
multimodal logistics for emissions, predicting
supplier non-compliance, or integrating circular-
economy analytics (Cannas et al., 2024). Moreover,
responsible Al frameworks must account for global
asymmetries—such as how small and medium
enterprises (SMEs) in emerging markets can adopt Al
equitably without being disadvantaged by data
scarcity or algorithmic bias (Wellbrock et al., 2025).

9.6 Longitudinal Validation and Causal Inference

Most existing SCM-AI studies are cross-sectional and
limited to single firms or short-term data (Daios et al.,
2025). The absence of longitudinal and causal-
inference designs restricts understanding of Al's
sustained impact. Future work should employ panel-
data econometrics, causal discovery, or digital-twin
simulations over extended horizons to capture
dynamic feedback between AI deployment and
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Mixed-method
approaches that triangulate quantitative model

supply-chain performance.
metrics with qualitative organizational insights will
yield richer, policy-relevant conclusions.

9.7 Toward a Multi-Disciplinary Research Agenda

The convergence of Al and SCM calls for
interdisciplinary collaboration among computer
scientists, operations researchers, ethicists, and
policymakers. Future research agendas should
integrate:

e Technical disciplines: federated learning,
reinforcement learning, generative Al.

e Organizational sciences: change
management, knowledge diffusion, human-

Al interaction.

e Governance frameworks: NIST AI RMF, EU
Al Act, ISO 38507, and EPCIS interoperability
standards.

A multi-disciplinary approach will ensure that SCM-
Al systems are not only intelligent but also responsible,
secure, and socially aligned.

X. CONCLUSIONS

The convergence of artificial intelligence and supply
chain management marks a new era of intelligent,
data-driven operations. Al technologies now
underpin every layer of the modern supply chain—
from forecasting and logistics to procurement, risk
mitigation, and sustainability. Organizations that
effectively integrate Al gain sharper visibility, faster
decision cycles, and greater resilience in the face of
volatility. However, success depends on more than
technology. Data quality, interoperability,
cybersecurity, and human expertise remain critical
enablers. Without proper governance and ethical
oversight, Al can amplify risks rather than reduce
them. A governance-first approach, anchored in
transparency, accountability, and continuous
learning, offers the clearest path forward. Companies
that pair innovation with responsibility will not only
optimize performance but also build supply chains
that are adaptive, sustainable, and trusted. In due
course, the future of supply chain excellence lies in
harmonizing human judgment with artificial

intelligence, combining analytical precision with
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strategic foresight to create truly intelligent global
networks.
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