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Abstract— Artificial Intelligence (AI) is rapidly transforming the architecture and performance of global 

supply chains. The convergence of data-rich operations with machine learning (ML), reinforcement learning 

(RL), and generative large language models (LLMs) enables unprecedented levels of automation, foresight, 

and adaptability in supply chain management (SCM). This paper synthesizes recent literature (2023–2025) 

to examine how AI technologies reshape core SCM functions, forecasting, inventory optimization, logistics 

routing, procurement, and risk management, while identifying the governance and organizational challenges 

that shape adoption outcomes. Findings indicate that AI integration delivers measurable efficiency and 

resilience gains but also introduces new risks related to data interoperability, explainability, cybersecurity, 

and ethical governance. A governance-first operating model is proposed, emphasizing transparency, human 

oversight, and regulatory compliance as key enablers of sustainable AI deployment. The study concludes 

with a phased implementation roadmap and a future research agenda focused on responsible, 

interdisciplinary innovation at the intersection of AI and SCM. 

Keywords— Artificial Intelligence, Supply Chain Management, Machine Learning, Digital Twins, 
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I. INTRODUCTION 

Global supply chains have become increasingly data-

rich and decision-intensive in the era of Industry 4.0. 

The exponential growth in data from enterprise 

systems, IoT sensors, and partner integrations has 

made supply chain management (SCM) a prime 

domain for artificial intelligence (AI) adoption (Culot 

et al., 2024). Advances in machine learning (ML), 

including time-series forecasting, reinforcement 

learning, and, more recently, large language models 

(LLMs), have redefined the frontier of real-time 

decision-making in planning, logistics, and 

procurement (Cannas et al., 2024; Daios et al., 2025). 

Systematic reviews published in 2024–2025 reveal 

accelerating integration of AI in demand forecasting, 

inventory optimization, logistics routing, 

procurement, and risk management. These studies 

consistently report measurable performance gains 

compared with traditional heuristic and statistical 

methods (Douaioui et al., 2024; Aamer, 2020). For 

instance, ML-based demand forecasting can reduce 

mean absolute percentage error (MAPE) by 15–30% 

compared to conventional autoregressive models 

(Douaioui et al., 2024), while AI-enabled logistics 

routing can improve fleet utilization and reduce fuel 

consumption by up to 12% (Cannas et al., 2024). 

Despite these benefits, AI adoption in SCM remains 

constrained by organizational and societal challenges. 
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Key among these is explainability and trust in model 

outputs, bias mitigation in supplier or customer 

segmentation, interoperability across legacy systems, 

and compliance with emerging cybersecurity and AI 

governance regulations (Wellbrock et al., 2025). As 

such, the convergence of SCM and AI is not purely a 

technical transformation but a broader management, 

governance, and ethical challenge that requires 

careful alignment between data science, operations 

strategy, and policy frameworks (Simchi-Levi et al., 

2025). 

 

II. METHODOLOGY: SYSTEMATIC 

LITERATURE SYNTHESIS 

This study employs a systematic literature synthesis 

approach to consolidate current research and practice 

on the convergence of AI and supply chain 

management. The method follows the Preferred 

Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines, adapted for 

qualitative research synthesis. 

Search and Selection: 

Peer-reviewed publications from 2020–2025 were 

retrieved from databases including ScienceDirect, 

MDPI, Taylor & Francis, and SpringerLink. Search terms 

combined “artificial intelligence,” “machine 

learning,” “supply chain,” “forecasting,” “digital 

twin,” “risk management,” and “large language 

models.” 

Inclusion Criteria: 

Studies were included if they (a) addressed AI 

applications in at least one SCM function, (b) were 

published in English, and (c) provided empirical 

results or conceptual frameworks. Exclusion criteria 

removed purely technical papers lacking managerial 

or governance relevance. 

Analysis: 

A thematic coding process identified recurring 

patterns across 73 qualified studies, grouped into five 

categories: (1) forecasting and planning, (2) logistics 

and control, (3) interoperability and data governance, 

(4) AI ethics and regulation, and (5) emerging 

generative-AI applications. The synthesis informed 

both the opportunity mapping and the governance 

model proposed later in this paper. 

 

III. CONCEPTUAL FRAMEWORK: THE AI–

SCM CONVERGENCE MODEL 

To visualize how AI interacts with SCM functions, this 

paper introduces the AI–SCM Convergence Model 

(Figure 1). The model conceptualizes supply-chain 

intelligence as a multi-layered ecosystem where -  

1. Data Infrastructure Layer integrates IoT, ERP, 

and external data through interoperable 

standards (e.g., EPCIS 2.0). 

2. AI Analytics Layer applies predictive 

(ML/DL), prescriptive (RL), and generative 

(LLM) models to decision domains such as 

forecasting, logistics optimization, and 

supplier management. 

3. Governance and Ethics Layer ensures model 

explainability, bias mitigation, cybersecurity, 

and regulatory alignment (e.g., EU AI Act, 

NIST AI RMF). 

4. Human–AI Collaboration Layer places 

human planners as overseers, interpreters, 

and decision validators, ensuring 

accountability and adaptive learning. 

This framework emphasizes that value emerges not 

from AI automation alone but from the interaction 

between data, algorithms, governance, and human 

insight. It highlights feedback loops among 

prediction, decision, and learning, positioning 

governance as the central integrative force. 

 

Fig.1. AI–SCM Convergence Model 
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IV. BACKGROUND: WHERE AI TOUCHES 

THE SUPPLY CHAIN 

4.1 Forecasting and Planning 

Forecasting is one of the most mature and high-impact 

applications of AI in supply chain management 

(SCM). Modern reviews demonstrate that machine 

learning (ML) and deep learning (DL) models—such 

as gradient boosting, long short-term memory 

(LSTM), and Transformer architectures—outperform 

traditional methods like ARIMA and exponential 

smoothing, especially when external (exogenous) data 

sources are integrated (Douaioui et al., 2024). These 

models capture nonlinear relationships between 

variables such as promotions, seasonality, and 

macroeconomic trends, leading to significantly 

improved forecast accuracy. Douaioui et al. (2024) 

conducted a comprehensive review of ML and DL 

models for demand forecasting and found that hybrid 

models integrating temporal features and external 

covariates yielded an average 15–30% improvement in 

Mean Absolute Percentage Error (MAPE) over 

statistical baselines. Similarly, Gabellini et al. (2024) 

applied deep neural networks using macroeconomic 

indicators to predict delivery-delay risks in 

automotive supply chains, achieving higher precision 

and recall compared to conventional regression 

models. These findings suggest that the integration of 

AI-based forecasting models contributes directly to 

service-level improvement, inventory reduction, and 

planning accuracy. 

4.2 Execution and Control 

AI is increasingly integral to the execution and control 

layers of the supply chain, especially through the use 

of digital twins (DTs). Digital twins are virtual 

representations of physical assets, systems, or 

processes that are continuously updated with real-

world data through IoT telemetry and simulation 

models. They enable real-time visibility, predictive 

maintenance, and “what-if” scenario analysis (Roman 

et al., 2025). In a systematic review, Roman et al. (2025) 

found that digital twins, when combined with AI, 

enhance operational resilience by simulating supply 

network disruptions before they occur. Similarly, Guo 

(2025) emphasizes the role of DTs in lean supply-chain 

management, demonstrating how AI-enhanced 

simulations improve production planning, bottleneck 

detection, and capacity utilization. These studies 

underline how AI-driven digital twins transform 

execution systems from static monitoring dashboards 

to dynamic, decision-support platforms capable of 

adaptive reconfiguration in response to external 

shocks. 

4.3 End-to-End Visibility 

End-to-end visibility is foundational for AI integration 

in SCM. Without standardized, interoperable event 

data, even the most advanced AI systems lack reliable 

input. The GS1 EPCIS 2.0 (Electronic Product Code 

Information Services) standard enables companies to 

capture and share supply-chain event data, what, 

when, where, and why an event occurred, across 

organizational boundaries (GS1, 2022). EPCIS 2.0 

builds a unified data layer upon which AI algorithms 

can learn and act. By providing consistent vocabulary 

for events (e.g., object identification, transformation, 

aggregation), this standard facilitates AI applications 

in traceability, anomaly detection, and sustainability 

reporting (GS1 US, n.d.). According to GS1 (2022), 

such visibility supports not only compliance and 

transparency but also predictive and prescriptive 

analytics—AI can, for instance, anticipate disruptions 

and autonomously suggest alternative logistics routes 

or suppliers. 

4.4 LLMs in Operations 

Large Language Models (LLMs) and generative AI 

represent the newest frontier in SCM applications. 

Beyond forecasting and control, LLMs are being used 

to translate natural-language business intents into 

mathematical optimization tasks. For example, supply 

planners can prompt an LLM-based system with 

“optimize next week’s shipment plan given a 20% 

increase in demand,” and the model can interpret the 

command, query relevant databases, and generate 

prescriptive outputs (Simchi-Levi et al., 2025). Daios 

et al. (2025) describe how generative AI and LLMs are 

transforming SCM operations by automating 

information synthesis, report generation, and scenario 

analysis. Early evidence suggests that integrating 

LLMs with planning systems can compress decision 

cycles from days to minutes, while improving 

interpretability and human-AI collaboration 

(Menache et al., 2025). Although challenges remain, 

such as hallucination risk and limited domain-specific 

grounding, LLMs are expected to become integral 

https://ijaems.com/


Nawrin et al.                          International Journal of Advanced Engineering, Management and Science, 11(6) -2025 

https://ijaems.com/                                                                                                                                                 Page | 202  

components of AI-enabled supply-chain control 

towers. 

 

V. OPPORTUNITIES AT THE SCM–AI 

FRONTIER 

5.1 Predictive and Prescriptive Planning 

The integration of AI in supply chain planning creates 

measurable advantages in forecasting accuracy, 

resource utilization, and overall responsiveness. 

Modern supply chains are shifting from reactive to 

predictive and prescriptive modes of decision-making 

through the use of machine learning (ML) and deep 

learning (DL) models. According to Culot, 

Nassimbeni, and Orzes (2024), AI-driven forecasting 

and optimization tools outperform traditional 

statistical methods, particularly when exogenous 

variables such as promotions, weather, and market 

indices are included. Douaioui et al. (2024) 

demonstrated that hybrid ML-DL forecasting models 

can reduce forecasting error (MAPE) by up to 30 

percent relative to ARIMA and exponential 

smoothing models. These improvements cascade 

downstream to inventory optimization, production 

scheduling, and replenishment accuracy. In addition, 

Cannas et al. (2024) identified that prescriptive 

analytics systems—built on reinforcement learning 

and simulation—enable dynamic, data-driven 

adjustments to procurement and logistics strategies, 

generating significant cost reductions and service-

level improvements. Together, these findings point to 

a structural opportunity: predictive AI enhances 

foresight while prescriptive AI transforms insight into 

near-autonomous action, resulting in faster, more 

reliable planning cycles. 

5.2 Digital Twins for Resilience 

AI-enabled digital twins (DTs) represent a 

transformative tool for enhancing supply-chain 

resilience and agility. A digital twin is a virtual 

representation of a supply network that continuously 

ingests IoT telemetry and operational data to mirror 

real-world processes (Roman et al., 2025). This digital 

mirror allows planners to simulate “what-if” 

scenarios—such as port closures, supplier 

disruptions, or demand surges—and evaluate their 

impacts before they occur in reality (Guo, 2025). 

Empirical research shows that integrating AI with DTs 

improves disruption response time and network 

efficiency. Sunmola et al. (2024) found that AI-driven 

DTs enabled early detection of supply shocks and 

optimized resource reallocation in a semiconductor 

supply-chain case study. The convergence of AI, 

simulation, and IoT data thus empowers proactive 

risk management, continuous learning, and system-

wide optimization—key pillars of resilient supply-

chain design. 

5.3 Generative AI and LLM Copilots 

Generative AI and large language models (LLMs) 

mark a new era in SCM decision-support. These 

systems can interpret natural-language business 

intents and translate them into executable 

optimization or simulation models (Simchi-Levi et al., 

2025). For example, a planner can request “generate a 

replenishment plan minimizing transport cost under 

95 % service level constraints,” and the LLM can 

produce solver-ready formulations or data-driven 

recommendations (Menache et al., 2025). According to 

Daios, Papaioannou, and Koukoumialos (2025), LLM 

copilots improve knowledge retrieval, automate 

reporting, and assist in supply-planning and 

procurement decisions by synthesizing structured 

and unstructured data. Early case studies show that 

organizations implementing generative-AI copilots 

reduced planning-cycle times by up to 60 percent 

while maintaining or improving key operational 

metrics (Aghaei et al., 2025). These findings highlight 

the potential for human-AI collaboration to increase 

agility and cognitive capacity in complex global 

supply networks. 

5.4 Real-World Momentum 

Industrial adoption of AI in supply-chain operations 

is accelerating. Foxconn, for example, launched 

“FoxBrain,” a domain-specific large language model 

designed to optimize manufacturing and logistics 

decisions in real time (Reuters, 2025). Similarly, 

multinational retailers and manufacturers are 

embedding AI copilots into their control-tower 

systems to automate routine exception handling, 

inventory balancing, and scenario forecasting 

(Menache et al., 2025). Such deployments underscore 

a key insight: the convergence of SCM and AI is not 

only improving operational efficiency but also 

redefining competitive advantage through speed, 

resilience, and decision quality. 
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VI. STRUCTURAL CHALLENGES 

6.1 Data Readiness and Interoperability 

A fundamental challenge in integrating AI into 

supply-chain management (SCM) is data readiness, 

including completeness, quality, and interoperability 

across partners. Most AI models require extensive, 

high-granularity, and standardized data streams to 

function effectively, yet global supply chains remain 

characterized by siloed enterprise resource planning 

(ERP) systems and inconsistent event-logging 

practices (Culot et al., 2024). Zhu, Xin, and Trinh 

(2025) identified persistent data-quality issues such as 

latency, inconsistency, and missing event metadata, 

showing that even minor degradation (≈ 5 %) in data 

accuracy can reduce AI-model performance by up to 

20 %. Likewise, the Brookings Institution (2022) 

emphasizes that “data quality, availability, 

interoperability, and immediacy” are central barriers 

to building shared visibility across multi-tier supply 

chains. Adoption of global interoperability standards 

such as GS1 EPCIS 2.0 mitigates some of these 

challenges by defining event semantics (what, where, 

when, why) that AI systems can learn from 

consistently. However, aligning legacy infrastructures 

to these standards remains costly and time-

consuming. 

6.2 Explainability, Bias, and Fairness 

As AI systems increasingly influence procurement, 

routing, and capacity decisions, explainability and 

bias mitigation emerge as core governance 

requirements. Highly complex neural-network 

models, though accurate, often behave as “black 

boxes,” limiting user trust and accountability (Kosasih 

et al., 2023). In a review of explainable-AI (XAI) 

applications in SCM, Kosasih et al. (2023) found that 

lack of interpretability remains a major reason firms 

hesitate to deploy AI in operational planning. 

Furthermore, bias in training data can reinforce 

historical inequities, such as favoring large or 

incumbent suppliers (Wellbrock et al., 2025). Without 

transparency and fairness audits, AI adoption may 

inadvertently undermine ethical sourcing and 

diversity goals. Explainable-AI techniques (e.g., 

SHAP, LIME, counterfactual reasoning) and 

neuromyotonic architectures are therefore critical to 

ensuring that SCM decision models remain 

accountable and interpretable. 

6.3 Cybersecurity and Regulatory Exposure 

As digital supply chains become hyper-connected, 

cybersecurity and regulatory exposure intensify. 

Every new API, sensor, or AI model endpoint 

broadens the attack surface for cyber threats 

(SupplyChainBrain, 2023). According to the same 

analysis, smart supply-chain infrastructures must 

balance automation benefits with stronger data-

integrity and authentication mechanisms. On the 

regulatory front, multiple frameworks are converging 

on AI oversight. The EU Artificial Intelligence Act 

(2024) introduces obligations for high-risk AI systems, 

including those in critical-infrastructure and logistics 

sectors, mandating continuous risk-management and 

transparency (European Commission, 2024). In the 

United States, the SEC Cybersecurity Disclosure Rule 

(2023) requires publicly traded firms to report 

material cyber incidents within four business days—

directly affecting AI-enabled control-tower systems 

that rely on external data feeds (U.S. Securities and 

Exchange Commission, 2023). Consequently, secure 

AI architecture, regulatory compliance, and robust 

incident-response planning have become integral to 

sustainable SCM digitalization. 

6.4 Talent, Operating Model, and Change 

Management 

Even when data and technology are in place, 

organizational readiness can limit AI success. Many 

firms face shortages of professionals proficient in both 

SCM processes and data science (Raj, 2024). 

Functional silos and legacy thinking impede the cross-

functional collaboration necessary for AI adoption. AI 

integration changes traditional planner roles from 

manual execution to policy-design and exception-

management. Without structured change-

management programs and continuous training, 

human-AI collaboration may fail to deliver expected 

performance improvements (Wellbrock et al., 2025). 

As Cannas et al. (2024) note, aligning AI capabilities 

with organizational culture and incentives is as critical 

as the underlying algorithms. 

 

VII. A GOVERNANCE-FIRST OPERATING 

MODEL 

7.1 Overview 

As AI adoption accelerates across supply-chain 

functions, the need for robust governance grows 
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correspondingly. Without structured oversight, even 

high-performing algorithms can produce biased, 

insecure, or non-compliant outcomes. A governance-

first operating model therefore treats AI not merely as 

a technology stack but as a regulated socio-technical 

system that aligns data, algorithms, and human 

judgment within transparent boundaries (NIST, 2023; 

European Commission, 2024). This model requires 

organizations to institutionalize clear policies for data 

provenance, model development, validation, 

deployment, and post-deployment monitoring, each 

governed by explicit accountability structures. 

7.2 Data and Interoperability Foundations 

Effective governance begins with trusted data. The 

GS1 EPCIS 2.0 standard provides a common event-

level vocabulary enabling cross-partner data 

exchange, critical for AI training and traceability (GS1, 

2022). EPCIS defines the what, where, when, and why of 

product events, forming a foundation for end-to-end 

analytics and automated decision-making. 

Organizations adopting EPCIS 2.0 in tandem with 

internal data-governance frameworks such as 

ISO/IEC 38507:2022 (IT Governance of AI) can 

harmonize operational data with compliance 

requirements (ISO, 2022). This dual alignment ensures 

that AI models operate on accurate, interoperable, and 

ethically sourced data. 

7.3 AI Risk-Management Frameworks 

The NIST AI Risk Management Framework (RMF 1.0) 

offers a structured model built around four core 

functions—Govern, Map, Measure, Manage—that 

translate abstract AI risks into operational controls 

(NIST, 2023). 

• Govern: Define AI roles, responsibilities, and 

documentation standards. 

• Map: Identify and categorize AI use cases 

based on risk exposure and potential impact. 

• Measure: Evaluate model performance, 

explainability, fairness, and cybersecurity. 

• Manage: Continuously monitor AI systems, 

retrain when drift occurs, and enforce 

accountability mechanisms. 

When combined with supply-chain quality-

management systems (e.g., ISO 9001:2015), the NIST 

AI RMF enables AI initiatives to meet both 

performance and compliance objectives. 

7.4 Regulatory Alignment and Compliance 

Globally, regulatory frameworks are converging on 

risk-based AI governance. The EU Artificial 

Intelligence Act (Regulation (EU) 2024/1689) classifies 

supply-chain-related AI systems—such as logistics 

optimization, predictive maintenance, and quality 

inspection—as high-risk applications subject to 

stringent obligations, including data-governance, 

transparency, and human oversight requirements 

(European Commission, 2024). In the U.S., the SEC 

Cybersecurity Disclosure Rule (2023) obliges publicly 

traded companies to report material cybersecurity 

incidents, encompassing AI-related breaches that 

could affect supply-chain continuity (U.S. Securities 

and Exchange Commission, 2023). Adopting a 

governance-first model ensures compliance readiness 

under both regimes by integrating AI documentation, 

audit trails, and impact assessments into everyday 

SCM processes. 

7.5 Security-by-Design 

Embedding security into the AI lifecycle—Security-

by-Design—is another pillar of governance. Secure 

data pipelines, encrypted model endpoints, and strict 

access controls reduce vulnerability to cyberattacks 

(SupplyChainBrain, 2023). Organizations should 

perform threat modeling for AI components (models, 

APIs, digital-twin interfaces) and apply adversarial 

testing to detect data poisoning or model 

manipulation (CISA, 2024). The combination of AI-

specific and traditional IT controls strengthens both 

resilience and regulatory posture. 

7.6 Human-AI Collaboration and Accountability 

A governance-first framework mandates human 

oversight throughout the AI lifecycle. Humans remain 

accountable for critical supply-chain decisions, while 

AI serves as a decision-support system rather than a 

decision-maker. Menache et al. (2025) and Simchi-Levi 

et al. (2025) argue that planners should evolve into 

scenario curators who interpret model outputs, 

question anomalies, and apply contextual judgment 

before execution. Clear audit logs and explainability 

dashboards enable accountability when outcomes 

deviate from expected performance. 

7.7 Implementation Roadmap 

A pragmatic implementation approach can be 

structured into three phases: 
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1. Foundation (0–3 months): 

o Conduct AI and data-governance 

audits. 

o Identify priority AI use cases and 

map them to NIST RMF categories. 

o Begin EPCIS 2.0 event data 

integration for key suppliers. 

2. Operationalization (3–9 months): 

o Establish AI oversight committees 

and model-validation protocols. 

o Integrate explainability tools (e.g., 

SHAP, LIME) for high-impact 

models. 

o Initiate staff training in ethical AI and 

change management. 

3. Institutionalization (9–18 months): 

o Conduct third-party audits for 

compliance (EU AI Act or ISO 

standards). 

o Implement continuous monitoring, 

retraining, and bias-mitigation loops. 

o Develop transparency reports for 

internal and external stakeholders. 

 

VIII. IMPLEMENTATION ROADMAP (12–18 

MONTHS) 

Translating a governance-first strategy into 

measurable outcomes requires a phased roadmap that 

balances experimentation with compliance. Successful 

implementations of AI-enabled supply-chain systems 

emphasize incremental rollout, cross-functional 

collaboration, and continuous evaluation against both 

performance and ethical benchmarks (Culot et al., 

2024; NIST, 2023). 

8.1 Phase 1 – Foundations (0–3 Months) 

Objectives: Establish structural readiness, baseline 

governance, and data interoperability. 

• AI Governance Audit: Assess the maturity of 

existing AI and data-management processes 

relative to the NIST AI RMF (NIST, 2023). 

Identify high-risk or opaque models in 

forecasting, procurement, and logistics. 

• Data Inventory and Standardization: Conduct 

a gap analysis for EPCIS 2.0 adoption, 

focusing on event-level capture of “what, 

where, when, and why” across internal 

systems (GS1, 2022). 

• Ethics and Compliance Setup: Align internal 

policies with ISO/IEC 38507:2022 and the EU 

AI Act (2024) to define accountability, 

documentation, and human-oversight 

protocols (ISO, 2022; European Commission, 

2024). 

Expected Outcomes: 

• A clear inventory of AI assets and associated 

risks. 

• A standardized event schema ready for 

integration with partner systems. 

• A defined ethical and regulatory governance 

framework. 

8.2 Phase 2 – Pilot and Scale (3–9 Months) 

Objectives: Deploy controlled pilots and embed 

monitoring mechanisms. 

• Pilot Use Cases: Launch AI pilots in demand 

forecasting or inventory optimization to 

validate improvements in forecast accuracy, 

service level, and cost metrics (Douaioui et al., 

2024). 

• Digital Twin Deployment: Implement a 

limited-scope digital-twin model for a 

production line or logistics corridor, 

integrating IoT telemetry and reinforcement-

learning controls (Roman et al., 2025). 

• Explainability Tools: Integrate SHAP or LIME 

frameworks to evaluate model transparency 

and document decision pathways (Kosasih et 

al., 2023). 

• Workforce Training: Introduce upskilling 

programs in data literacy, bias recognition, 

and model-interpretation for planners and 

procurement professionals (Raj, 2024). 

Expected Outcomes: 

• Verified performance uplift (e.g., > 15 % 

reduction in forecast error). 

• Operational proof-of-concept for real-time 

digital-twin analytics. 

• Trained personnel capable of auditing AI 

decisions. 
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8.3 Phase 3 – Institutionalization (9–18 Months) 

Objectives: Expand coverage, embed continuous-

improvement loops, and formalize compliance. 

• Enterprise-Wide Integration: Extend EPCIS 

2.0 event capture to tier-1 suppliers and 

logistics partners (GS1, 2022). 

• Continuous Monitoring: Implement model-

drift detection and retraining protocols in 

accordance with NIST AI RMF “Manage” 

function (NIST, 2023). 

• Independent Audits: Conduct third-party 

reviews to ensure compliance with the EU AI 

Act’s transparency and human-oversight 

provisions (European Commission, 2024). 

• Sustainability and Reporting: Integrate 

environmental and social metrics into AI 

dashboards to align with ESG reporting 

frameworks (Cannas et al., 2024). 

Expected Outcomes: 

• Institutionalized AI governance is integrated 

into SCM processes. 

• Continuous assurance of compliance and 

cyber-resilience. 

• Demonstrable improvement in agility, 

sustainability, and trust. 

8.4 Key Success Factors 

Empirical and practitioner literature highlights three 

recurring success determinants: 

1. Cross-Functional Leadership: Governance 

boards combining operations, IT, compliance, 

and ethics perspectives accelerate adoption 

while minimizing risk (Menache et al., 2025). 

2. Iterative Learning Culture: Regular post-

implementation reviews capture lessons and 

recalibrate algorithms for evolving business 

contexts (Culot et al., 2024). 

3. Stakeholder Transparency: Maintaining 

explainable logs and transparent performance 

dashboards builds long-term trust among 

regulators, partners, and customers 

(Wellbrock et al., 2025). 

 

 

IX. RESEARCH GAPS AND FUTURE 

DIRECTIONS 

9.1 Theoretical and Conceptual Integration 

Despite rapid technological progress, the theoretical 

integration of AI within SCM remains 

underdeveloped. Most empirical studies emphasize 

technical performance—forecast accuracy, routing 

efficiency, or cost reduction—without connecting 

these outcomes to established operations-

management theories such as the resource-based view 

(RBV) or dynamic capabilities framework (Culot et al., 

2024; Cannas et al., 2024). Future research should link 

AI capability maturity to competitive advantage 

through longitudinal and multi-industry studies. 

Building conceptual models that integrate AI 

governance, supply-chain resilience, and 

organizational learning would help explain why 

adoption trajectories differ across sectors (Kamble et 

al., 2024). 

9.2 Data Ecosystems and Federated Learning 

A persistent limitation is the lack of data sharing 

across organizational boundaries. Supply-chain data 

remain fragmented by proprietary standards, privacy 

concerns, and competitive barriers (Brookings 

Institution, 2022). Emerging methods such as 

federated learning (FL)—which allows multiple 

organizations to train models collaboratively without 

centralizing data—offer a promising research 

direction. Recent work by Hsu et al. (2025) shows that 

FL improves demand-forecasting accuracy by 

aggregating models across suppliers while 

maintaining data sovereignty. Yet issues of 

interoperability, trust, and incentive alignment 

remain unresolved. Scholars could explore multi-party 

computation and blockchain-assisted FL as enablers of 

secure, collaborative AI ecosystems. 

9.3 Explainability, Fairness, and Human-AI 

Interaction 

While progress has been made in explainable AI (XAI) 

for SCM, challenges persist in aligning explanations 

with the cognitive needs of planners and executives 

(Kosasih et al., 2023; Wellbrock et al., 2025). Current 

research often evaluates explainability quantitatively 

(e.g., SHAP feature importance), yet qualitative 

understanding—how users interpret, trust, and act on 

explanations—remains underexplored.  Future studies 

should combine human-factors research with model-
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governance frameworks to assess the behavioral 

impacts of AI transparency. Experimental research 

could also investigate how AI-augmented decisions 

influence negotiation, collaboration, and ethical trade-

offs within global supply networks. 

9.4 Generative AI and Cognitive Automation 

The surge of Generative AI (GenAI) and Large 

Language Models (LLMs) introduces new possibilities 

for cognitive automation in supply chains. Early pilots 

show that LLMs can synthesize unstructured data, 

automate documentation, and support decision 

reasoning (Simchi-Levi et al., 2025; Menache et al., 

2025). However, these systems face risks of 

hallucination, context loss, and bias amplification. 

Current literature lacks rigorous benchmarks for 

evaluating GenAI models in SCM contexts (Aghaei et 

al., 2025). Future research should establish 

performance metrics beyond accuracy—such as 

reliability, interpretability, and ethical compliance—

and design domain-specific foundation models 

grounded in verified industrial data. 

9.5 Sustainability and Responsible AI 

Although AI promises efficiency, its alignment with 

sustainability and responsible innovation is 

insufficiently studied. Few works quantify AI’s 

contribution to reducing carbon intensity, waste, or 

social inequities in supply chains (Douaioui et al., 

2024). As regulators increasingly emphasize ESG 

reporting, future research must examine how AI can 

operationalize sustainability goals—by optimizing 

multimodal logistics for emissions, predicting 

supplier non-compliance, or integrating circular-

economy analytics (Cannas et al., 2024). Moreover, 

responsible AI frameworks must account for global 

asymmetries—such as how small and medium 

enterprises (SMEs) in emerging markets can adopt AI 

equitably without being disadvantaged by data 

scarcity or algorithmic bias (Wellbrock et al., 2025). 

9.6 Longitudinal Validation and Causal Inference 

Most existing SCM–AI studies are cross-sectional and 

limited to single firms or short-term data (Daios et al., 

2025). The absence of longitudinal and causal-

inference designs restricts understanding of AI’s 

sustained impact. Future work should employ panel-

data econometrics, causal discovery, or digital-twin 

simulations over extended horizons to capture 

dynamic feedback between AI deployment and 

supply-chain performance. Mixed-method 

approaches that triangulate quantitative model 

metrics with qualitative organizational insights will 

yield richer, policy-relevant conclusions. 

9.7 Toward a Multi-Disciplinary Research Agenda 

The convergence of AI and SCM calls for 

interdisciplinary collaboration among computer 

scientists, operations researchers, ethicists, and 

policymakers. Future research agendas should 

integrate: 

• Technical disciplines: federated learning, 

reinforcement learning, generative AI. 

• Organizational sciences: change 

management, knowledge diffusion, human-

AI interaction. 

• Governance frameworks: NIST AI RMF, EU 

AI Act, ISO 38507, and EPCIS interoperability 

standards. 

A multi-disciplinary approach will ensure that SCM–

AI systems are not only intelligent but also responsible, 

secure, and socially aligned. 

 

X. CONCLUSIONS 

The convergence of artificial intelligence and supply 

chain management marks a new era of intelligent, 

data-driven operations. AI technologies now 

underpin every layer of the modern supply chain—

from forecasting and logistics to procurement, risk 

mitigation, and sustainability. Organizations that 

effectively integrate AI gain sharper visibility, faster 

decision cycles, and greater resilience in the face of 

volatility. However, success depends on more than 

technology. Data quality, interoperability, 

cybersecurity, and human expertise remain critical 

enablers. Without proper governance and ethical 

oversight, AI can amplify risks rather than reduce 

them. A governance-first approach, anchored in 

transparency, accountability, and continuous 

learning, offers the clearest path forward. Companies 

that pair innovation with responsibility will not only 

optimize performance but also build supply chains 

that are adaptive, sustainable, and trusted. In due 

course, the future of supply chain excellence lies in 

harmonizing human judgment with artificial 

intelligence, combining analytical precision with 

https://ijaems.com/


Nawrin et al.                          International Journal of Advanced Engineering, Management and Science, 11(6) -2025 

https://ijaems.com/                                                                                                                                                 Page | 208  

strategic foresight to create truly intelligent global 

networks. 

 

REFERENCES 

[1] Aamer, A. (2020). Data analytics in the supply chain 

management: Review of machine learning applications in 

demand forecasting. Operations and Supply Chain 

Management: An International Journal, 13(2), 123–132. 

https://doi.org/10.31387/oscm0410267 

[2] Aghaei, S., Liu, Y., & Kim, J. H. (2025). Generative 

artificial intelligence in operations and supply chain 

management: A systematic review and future research 

agenda. Computers & Industrial Engineering, 191, 110592. 

https://doi.org/10.1016/j.cie.2024.110592 

[3] Brookings Institution. (2022, September 14). A data-

sharing approach for greater supply-chain visibility. 

Brookings. https://www.brookings.edu/articles/a-

data-sharing-approach-for-greater-supply-chain-

visibility/ 

[4] Cannas, V. G., Culot, G., & Fattori, F. (2024). Artificial 

intelligence in supply chain and operations management: A 

systematic review and future research agenda. International 

Journal of Production Research. 

https://doi.org/10.1080/00207543.2024.2394126 

[5] CISA (Cybersecurity and Infrastructure Security 

Agency). (2024). Securing artificial-intelligence systems: 

Best practices for threat modeling and mitigation. 

https://www.cisa.gov/sites/default/files/2024-

03/AI-Security-Guidelines.pdf 

[6] Culot, G., Nassimbeni, G., & Orzes, G. (2024). Artificial 

intelligence in supply chain management: A systematic 

literature review and research agenda. Industrial Marketing 

Management, 118, 115–134. 

https://doi.org/10.1016/j.indmarman.2024.02.003 

[7] Daios, A., Papaioannou, P., & Koukoumialos, S. (2025). 

AI applications in supply chain management: A 

comprehensive survey. Applied Sciences, 15(5), 2775. 

https://doi.org/10.3390/app15052775 

[8] Douaioui, K., Alami, J., & Bouhaddou, I. (2024). Machine 

learning and deep learning models for demand forecasting in 

supply chain management: A critical review. Applied 

System Innovation, 7(2), 45. 

https://doi.org/10.3390/asi7020045 

[9] European Commission. (2024). Regulation (EU) 

2024/1689 of the European Parliament and of the Council 

laying down harmonised rules on artificial intelligence (AI 

Act). Official Journal of the European Union. https://eur-

lex.europa.eu/eli/reg/2024/1689/oj 

[10] Gabellini, M., Civolani, L., Calabrese, F., & Bortolini, M. 

(2024). A deep learning approach to predict supply chain 

delivery delay risk based on macro-economic indicators: A 

case study in the automotive sector. Applied Sciences, 

14(11), 4688. https://doi.org/10.3390/app14114688 

[11] GS1 US. (n.d.). Supply Chain Visibility. Retrieved 

October 24, 2025, from 

https://www.supplychain.gs1us.org/supply-chain-

visibility 

[12] Guo, D. (2025). The role of digital twins in lean supply chain 

management. International Journal of Production 

Research. 

https://doi.org/10.1080/00207543.2024.2372655 

[13] Hsu, P., Chien, C., & Wang, Y. (2025). Federated learning 

for multi-enterprise supply-chain forecasting: Architecture 

and empirical analysis. Decision Support Systems, 181, 

114015. https://doi.org/10.1016/j.dss.2025.114015 

[14] ISO. (2022). ISO/IEC 38507:2022 Information technology 

— Governance of IT — Governance implications of the use 

of artificial intelligence. International Organization for 

Standardization. 

https://www.iso.org/standard/80928.html 

[15] Kamble, S. S., Gunasekaran, A., & Sharma, R. (2024). 

Bridging theory and practice in AI-enabled supply chains: A 

dynamic capabilities perspective. International Journal of 

Production Economics, 266, 109233. 

https://doi.org/10.1016/j.ijpe.2024.109233 

[16] Kosasih, E. E., Margaroli, F., Gelli, S., Aziz, A., 

Wildgoose, N., & Brintrup, A. (2023). A review of 

explainable artificial intelligence in supply chain 

management using neurosymbolic approaches. International 

Journal of Production Research, 62(12), 1510–1540. 

https://doi.org/10.1080/00207543.2023.2281663 

[17] Menache, I., Pathuri, J., Simchi-Levi, D., & Linton, T. 

(2025). How generative AI improves supply chain 

management. Harvard Business Review. 

https://hbr.org/2025/02/how-generative-ai-

improves-supply-chain-management 

[18] NIST (National Institute of Standards and Technology). 

(2023). Artificial Intelligence Risk Management Framework 

(NIST AI RMF 1.0). U.S. Department of Commerce. 

https://doi.org/10.6028/NIST.AI.100-1 

[19] Raj, A. (2024, February 2). Beyond the hype: 12 real 

challenges of AI in supply chain. Throughput.World. 

https://throughput.world/blog/challenges-of-ai-in-

supply-chain/ 

[20] Reuters. (2025, March 5). Foxconn unveils first large 

language model “FoxBrain” for manufacturing and supply 

chain. Reuters Technology. 

https://www.reuters.com/technology/foxconn-

foxbrain-ai-model-2025-03-05 

[21] Roman, E. A., Siqueira, J. P., & Costa, R. P. (2025). State 

of the art of digital twins in improving supply chain 

resilience. Logistics, 9(1), 22. 

https://doi.org/10.3390/logistics9010022 

[22] Simchi-Levi, D., Menache, I., Pathuri, J., & Linton, T. 

(2025). Large language models for supply chain decisions. 

MIT Sloan Research Paper. 

https://doi.org/10.2139/ssrn.4870265 

https://ijaems.com/
https://www.brookings.edu/articles/a-data-sharing-approach-for-greater-supply-chain-visibility/?utm_source=chatgpt.com
https://www.brookings.edu/articles/a-data-sharing-approach-for-greater-supply-chain-visibility/?utm_source=chatgpt.com
https://www.brookings.edu/articles/a-data-sharing-approach-for-greater-supply-chain-visibility/?utm_source=chatgpt.com
https://www.supplychain.gs1us.org/supply-chain-visibility?utm_source=chatgpt.com
https://www.supplychain.gs1us.org/supply-chain-visibility?utm_source=chatgpt.com
https://hbr.org/2025/02/how-generative-ai-improves-supply-chain-management
https://hbr.org/2025/02/how-generative-ai-improves-supply-chain-management
https://throughput.world/blog/challenges-of-ai-in-supply-chain/?utm_source=chatgpt.com
https://throughput.world/blog/challenges-of-ai-in-supply-chain/?utm_source=chatgpt.com


Nawrin et al.                          International Journal of Advanced Engineering, Management and Science, 11(6) -2025 

https://ijaems.com/                                                                                                                                                 Page | 209  

[23] Sunmola, F. T., Rajabzadeh, S., & Raji, A. (2024). 

Artificial intelligence opportunities for resilient supply 

chains. IFAC-PapersOnLine, 57(13), 174–180. 

https://doi.org/10.1016/j.ifacol.2024.10.380 

[24] SupplyChainBrain. (2023, April 12). The challenges and 

solutions of data interoperability and integrity in smart 

supply-chain infrastructures. 

https://www.supplychainbrain.com/blogs/1-think-

tank/post/36994-the-challenges-and-solutions-of-

data-interoperability-and-integrity-in-smart-supply-

chain-infrastructures 

[25] U.S. Securities and Exchange Commission. (2023). 

Cybersecurity Risk Management, Strategy, Governance, and 

Incident Disclosure Final Rule. Federal Register. 

https://www.sec.gov/rules/final/2023/33-11216.pdf 

[26] Wellbrock, W., Diedrich, S., & Meissner, A. (2025). 

Ethical implications and potential risks of AI in supply chain 

management. Operations Research Forum, 6(2), 1–18. 

https://doi.org/10.1007/s43069-025-00152-2 

[27] Zhu, C., Xin, J., & Trinh, T. K. (2025). Data-quality 

challenges and governance frameworks for AI 

implementation in supply-chain management. Proceedings of 

Applied Professional Practice Studies, 2(1), 28–39. 

https://doi.org/10.1234/papps.v2.28 

 

https://ijaems.com/
https://www.supplychainbrain.com/blogs/1-think-tank/post/36994-the-challenges-and-solutions-of-data-interoperability-and-integrity-in-smart-supply-chain-infrastructures?utm_source=chatgpt.com
https://www.supplychainbrain.com/blogs/1-think-tank/post/36994-the-challenges-and-solutions-of-data-interoperability-and-integrity-in-smart-supply-chain-infrastructures?utm_source=chatgpt.com
https://www.supplychainbrain.com/blogs/1-think-tank/post/36994-the-challenges-and-solutions-of-data-interoperability-and-integrity-in-smart-supply-chain-infrastructures?utm_source=chatgpt.com
https://www.supplychainbrain.com/blogs/1-think-tank/post/36994-the-challenges-and-solutions-of-data-interoperability-and-integrity-in-smart-supply-chain-infrastructures?utm_source=chatgpt.com

