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Abstract— The Pythagorean Theorem, a fundamental result in Euclidean geometry, traditionally relates the 

lengths of the sides of a right-angled triangle. In this paper, we extend the classical Pythagorean Theorem into the 

context of normed vector spaces, using the concept of inner products. We explore how the theorem manifests in 

higher-dimensional spaces and provide a generalized version applicable to normed spaces beyond two 

dimensions. This generalization not only reinforces the geometric interpretation of the theorem but also connects 

it to broader mathematical frameworks such as vector spaces, norms, and inner products. The results presented 

here demonstrate the versatility of the Pythagorean Theorem and its relevance across various fields of 

mathematics, highlighting its applications in both theoretical and applied contexts. 
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I. INTRODUCTION 

The Pythagorean Theorem is one of the most remarkable 

and well-known results in mathematics. Historically 

attributed to the ancient Greek mathematician Pythagoras, 

this theorem states that in a right-angled triangle, the square 

of the length of the hypotenuse c is equal to the sum of the 

squares of the lengths of the other two sides, a and b. 

Mathematically, this is expressed as: 

 𝑎2+  𝑏2 =  𝑐2 

This theorem has been known and proved by various 

cultures throughout history. The earliest known record dates 

back to the Babylonians around 1800 BCE, who used it in 

their calculations. The Indians, particularly Baudhayana, 

provided a detailed proof around 800 BCE, and the Chinese 

also contributed with their own version in the Zhou Bi Suan 

Jing. The theorem was later named after Pythagoras, who 

lived in the 6th century BCE and is traditionally credited 

with its discovery, though it’s likely he learned it from these 

earlier sources. The Pythagorean Theorem not only holds a 

fundamental place in Euclidean geometry but also serves as 

a cornerstone for various fields such as trigonometry, 

algebra, and even physics. 

In modern mathematical language, the Pythagorean 

Theorem can be viewed through the lens of vector spaces 

and norms. Specifically, in a two-dimensional Euclidean 

space, the theorem is a manifestation of the inner product, 

where the Euclidean norm (or length) of a vector v = (a, b) 

is given by: 

 ||𝑣|| =  𝑎2 + 𝑏2 

This notion can be generalized to n-dimensional normed 

spaces (or vector spaces) using inner products. For a vector 

v = (v1, v2,…., vn) in Rn, the Euclidean norm is defined as: 

 ||𝑣|| = 𝑣12 + 𝑣22 + . 𝑣𝑛2 

This generalization leads to the concept of the Pythagorean 

Theorem in higher dimensions. For any two orthogonal 

vectors u and v in an inner product space, the norm of their 

sum satisfies: 

||𝑢 + 𝑣||2 = ||𝑢||2 + ||𝑣||2 

This result is a direct extension of the classical Pythagorean 

Theorem. 

However, the Pythagorean Theorem is specifically 

applicable to right-angled triangles, the reasons for which 

we will explore in the later sections of this paper. For non-

right-angled triangles, this theorem does not hold. Instead, 
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more general results such as the Law of Cosines are used, 

which account for the angle between the sides: 𝑐2 = 𝑎2 + 𝑏2 

− 2𝑎𝑏 𝑐𝑜𝑠(θ) 

where θ is the angle opposite the side c. This highlights the 

special nature of the right angle in the Pythagorean Theorem 

and underscores why the theorem is not directly applicable 

to non-right-angled triangles. 

In this research, we explore the generalization of the 

Pythagorean Theorem within the framework of normed 

vector spaces, leveraging inner products to extend these 

classical concepts into broader mathematical contexts. 

 

II.  METHOD 

I) VECTOR SPACES 

A vector space, or linear space, is a fundamental concept in 

mathematics and physics, providing a framework for 

working with vectors. In many areas of mathematics, the 

concept of forming ‘linear combinations’ of elements within 

a set is both useful and significant. This idea is naturally 

encountered in various contexts, such as in the study of 

linear equations through linear combinations of matrix 

rows, in calculus with linear combinations of functions, and 

in three-dimensional Euclidean space with linear 

combinations of vectors. Linear algebra, as a field, focuses 

on the shared properties of algebraic systems characterized 

by a set and a coherent notion of linear combinations of its 

elements. 

Vector Spaces is a fundamental mathematical construct that 

incorporates this abstraction and provides a unifying 

framework for analyzing and understanding these systems. 

By defining vector spaces and exploring their properties, we 

establish a foundation for numerous applications across 

different branches of mathematics and science. Formally, a 

vector space over a field F (such as the real numbers R or 

complex numbers C) is a set V equipped with two 

operations: vector addition and scalar multiplication. These 

operations must satisfy the following axioms for all vectors 

u, v, w ∈ V and scalars c, d ∈ F: 

• Closure under addition: 𝑢 + 𝑣 ∈ 𝑉. 

• Commutativity of addition: 𝑢 + 𝑣 = 𝑣 + 𝑢. 

• Associativity of addition: 𝑢 + (𝑣 + 𝑤) = (𝑢 + 𝑣) + 𝑤. 

• Existence of additive identity: There exists a vector 0 ∈ V 

such that 𝑢 + 0 = 𝑢 for all u ∈ V  

• Existence of additive inverse: For each u ∈ V, there exists 

a vector 𝑢 ∈ 𝑉 such that 𝑢 +(- 𝑢) = 0 

• Closure under scalar multiplication: cu ∈ V  

• Distributivity of scalar multiplication with respect to 

vector addition: 𝑐 (𝑢 + 𝑣) = 𝑐𝑢 + 𝑐𝑣. 

• Distributivity of scalar multiplication with respect to field 

addition: (𝑐 + 𝑑) 𝑢 = 𝑐𝑢 + 𝑑𝑢. 

• Associativity of scalar multiplication: 𝑐(𝑑𝑢) = (𝑐𝑑)𝑢. 

• Existence of multiplicative identity: 1(𝑢) = 𝑢 for all 𝑢 ∈ 𝑉  

These axioms provide a structure that supports many 

operations and concepts in linear algebra, such as linear 

transformations, eigenvalues, and eigenvectors. 

Understanding vector spaces is essential for delving into 

inner products and norms, which we will explore in 

subsequent sections. 

 

III. INNER PRODUCT 

An inner product generalizes the dot product. In a vector 

space, it provides a method for multiplying vectors to yield 

a scalar. This inner product can also be used to define the 

notions of ’length’ and ’angle. 

Definition- Let F be the field of real numbers or the field 

of complex numbers, and V a vector space over F . An 

inner product on V is a function which assigns to each 

ordered pair of vectors x, y ∈ V a scalar ⟨x, y⟩ ∈ F in such 

a way that for all x, y, z ∈ V and all 

scalars β, the following properties hold: 

(a) ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩, 

(b) ⟨βx, y⟩ = β⟨x, y⟩, 

 

(c) ⟨𝑦, 𝑥⟩ =     ⟨𝑥, 𝑦⟩, the bar denoting complex conjugation, 

(d) ⟨x, x⟩ > 0 if x != 0. 

The vector space V with an inner product is called a (real) 

inner product space. 

III) NORMS 

By the third axiom ⟨u, u⟩ ≥ 0 of an inner product, ⟨u, u⟩ is 

nonnegative for any vector u. Thus, its positive square root 

exists. We use the notation 

∥𝑢∥ = 𝑝⟨𝑢, 𝑢⟩. 

This nonnegative number is called the norm or length of u. 

The relation ∥u∥2 = ⟨u, u⟩ will is used frequently. 

Definition- A vector norm is a function from Rn to R, with 

a certain number of properties. If x ∈ Rn, we symbolize its 

norm by ∥x∥. The defining properties of a norm are: 1. ∥x∥ 

≥ 0 for all x ∈ Rn and also ∥x∥ = 0 if and only 

if x=0. 

2. ∥αx∥ = |α| · ∥x∥ for all α ∈ R and x ∈ Rn. 

3. ∥x + y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ Rn. 
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IV. ORTHOGONALITY 

Let V be an inner product space. The vectors 𝑥, 𝑦 ∈ 𝑉 are 

said to be orthogonal and x is said to be orthogonal to y if 

⟨𝑥, 𝑦⟩ = 0 

The relation is clearly symmetric—if 𝑥 is orthogonal to 𝑦, 

then ⟨𝑦, 𝑥⟩ = 0 , and so 𝑦 is orthogonal to 𝑥. We note that 0 

∈ 𝑉 is orthogonal to every 𝑦 ∈ 𝑉, because 

⟨0, 𝑦⟩ = ⟨0𝑦, 𝑦⟩ = 0 ⟨𝑦, 𝑦⟩ = 0 

Conversely, if 𝑥 is orthogonal to every 𝑦 ∈ 𝑉, then ⟨𝑥, 𝑥⟩ 

= 0 by [I3]. Observe that 𝑥 and 𝑣 are orthogonal if and 

only if 𝑐𝑜s α =0, where α  is the angle between x and y. 

Also, this is true if and only if 𝑥 and 𝑦 are 

“perpendicular”- that is,  

α= 
𝜋

2
 ( 𝑜𝑟 α = 90◦) 

 

V. RESULTS 

I) GENERALISED PYTHAGORAS THEOREM 

Let 𝑢, 𝑣 ∈ 𝑉  and 𝑢 is orthogonal to 𝑣 then  

∥ u +  v||2= ∥ 𝑢 ∥2+ ∥𝑣∥2  

Proof- 

If ∥𝑢 + 𝑣∥2 = ⟨𝑢 + 𝑣, 𝑢 + 𝑣⟩ 

Then 

 

 ||𝑢||2 

|| 𝑣 ||2 

 =∥ 𝑢 ∥2+ ∥𝑣∥2 

 

For n-dimensions- 

 

 

VI. CONCLUSION 

In conclusion, this paper has successfully extended the 

classical Pythagorean Theorem, traditionally applicable 

to right-angled triangles in Euclidean geometry, into a 

more generalized framework suitable for normed vector 

spaces. By leveraging the concepts of inner products and 

norms, we have demonstrated that the core principles of 

the Pythagorean Theorem can be applied within higher-

dimensional spaces, allowing for broader mathematical 

and practical applications. This generalization provides a 

foundational understanding that bridges classical 

geometry with more advanced linear algebra, offering 

insights that can be utilized in various fields of 

mathematics and science. Through this exploration, the 

intrinsic relationship between vector norms and inner 

products has been elucidated, reinforcing the theorem's 

importance and versatility in modern mathematical 

contexts. 
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