
 

International Journal of Advanced Engineering, Management and 

Science (IJAEMS) 
Peer-Reviewed Journal 

ISSN: 2454-1311 | Vol-8, Issue-10; Oct, 2022 

Journal Home Page: https://ijaems.com/ 

Article DOI: https://dx.doi.org/10.22161/ijaems.810.1 
 

 

This article can be downloaded from here: www.ijaems.com                                                                                                                                     1 

©2022 The Author(s). Published by Infogain Publication. 

This work is licensed under a Creative Commons Attribution 4.0 License. http://creativecommons.org/licenses/by/4.0/  

The Effect of Earthquake-induced Pounding on the 

Response of a Series of Neighboring Buildings 

Beshoy Mosa*1, Hytham Elwardany2, M. Diaa Eldin Khedr3 ,Ayman Seleemah4 
 

1,3 Department of Basic Engineering sciences, Benha Faculty of Engineering, Benha University, Egypt 

2 Structural Engineering Department, Faculty of Engineering, Delta University for Science and Technology, Egypt 

4 Structural Engineering Department, Faculty of Engineering, Tanta University, Egypt 

 

Received: 12 Sep 2022; Received in revised form: 29 Sep 2022; Accepted: 04 Oct 2022; Available online: 10 Oct 2022 

 

Abstract— The phenomenon of pounding that occurs during earthquakes for adjacent buildings may cause 

severe damage to the structure and may cause a complete collapse of the structure. This paper aims to make a 

comparison between the practical and theoretical results resulting from the work of Matlab Code, taking into 

account the calculation of the pounding force between adjacent towers, and study the effect of changing the 

coefficient of restitution on the acceleration time history and pounding force between adjacent buildings, study 

the peak impact force with respect to the stiffness of impact spring element. An impact simulation is carried out 

numerically using a nonlinear viscoelastic model. The results showed that the higher the coefficient of 

restitution, the lower the pounding forces between adjacent buildings and the maximum acceleration value. It 

also resulted from the study that the higher the impact stiffness parameter, the greater the pounding force 

between adjacent buildings. 
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I. INTRODUCTION 

Due to the rise in population and the limited amount of 

available land space in crowded metropolitan areas, 

buildings are positioned close to one another. High-height 

buildings have historically housed offices for businesses, 

but recent years have seen a growth in residential use [1]. 

With the construction of modern structures, that are built 

close together, the pounding of structures is becoming a 

new essential commodity. The word "pounding" is used by 

previous researchers [2-6] to describe when two 

neighbouring constructions are close to one another and 

collide as a result of lateral loading. Previous researchers 

have also referred to "pounding of structures" as contact 

between neighbouring structures [7, 8]. Due to their out-

of-phase vibration brought on by earthquake stimulation 

(i.e., mass or rigidity) clash. Similar to Jankowski [9],[10] 

characterised structural hammering as out-of-phase 

vibrations that can also happen during high wind 

conditions. According to previous field evidence, the 

pounding phenomenon has caused light to substantial 

structural damage that has even led to widespread 

structural collapses [11]. Numerous academics have in the 

past examined these pounding events in great detail, 

especially in relation to previous earthquake occurrences 

[4, 5, 9, 11-15]. To comprehend the pounding behaviour, a 

number of numerical studies have been carried out using 

various numerical simulation modelling techniques. For 

instance, Jankowski (2005a) [16] used a nonlinear 

viscoelastic model to simulate the impact force between 

two nearby single-degree-of-freedom systems. Since it was 

discovered that it has a substantial impact on how they 

collide, the study supported the significance of the natural 

frequencies of nearby buildings. Miari et al. [17] 

investigated the seismic pounding between nearby 

structures with various base conditions. [18]. The study of 

the mutual pounding of multistory buildings was another 

area of focus. For instance, Anagnostopoulos and 

Spiliopoulos explored the pounding between multi-story 
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structures using multi-degree-of-freedom (MDOF) systems 

with lumped mass at each story level (1992). The findings 

supported the hypothesis that substantial overstresses 

could emerge from pounding in the event of unequal 

building heights. Maison and Kasai (1992) [4] investigated 

the impact of two nearby structures that were each 8 

stories and 15 stories tall. The investigation comprised 

formulating and resolving the MDOF systems' motion 

equations that represented the examined buildings. 

Karayannis and Favvata investigated the ductility 

requirements as well as the seismic pounding response of 

reinforced concrete structures with unequal heights 

(2005)[19]. significant rise in the ductility requirements for 

the building's taller columns [18]. Numerous researches 

used numerical and experimental methodologies to 

simulate the structural pounding behavior during lateral 

excitation [20, 21] and experimental approaches [22-25]. 

Studies using single-degree-of-freedom (SDOF) systems 

have explored the response of buildings to pounding with 

the aid of numerical analysis [24, 26] and one-directional 

research [27-30]. Other research has modified their 

structural pounding evaluation through the use of several 

degrees of freedom (MDOF) [31-34]. Among the 

experimental studies that were conducted on three adjacent 

towers with SDOF is El-Khoriby [34]. Three tower models 

with varying frequencies were used in the investigation. 

The towers were tested in two different configurations. In 

the first arrangement, a rigid tower was positioned in the 

center of two flexible structures. The conclusions of the 

experimental study clearly show that pounding may have a 

major effect on the behaviour of the structures. Because 

they serve as stoppers for the flexible constructions, they 

also demonstrate that the rigid towers are more affected by 

pounding than the flexible ones. 

In this paper, a comparison is made between the 

experimental and numerical studies for three adjacent 

buildings [34] and the effect of variance on the coefficient 

of restitution. 

 

II. MATHEMATICAL MODEL 

A series of adjacent buildings that have been modelled as 

elastic SDOF systems are taken into account in the current 

investigation. The generic dynamic equation of motion 

(see Fig. 1) that describes the collection of buildings is 

expressed as: 

 

Fig. 1. Mathematical model for a series of three adjacent 

structures 

Where {ẍg(t)}  is the acceleration vector of the 

input ground motion and {fimp.(t)} is the impact force 

vector for the colliding adjacent buildings, and {x(t)},

{ẋ(t)}, {ẍ(t)} are the displacement, velocity, and 

acceleration vectors, respectively; [m], [c] and [k] are the 

mass, damping, and stiffness matrices, respectively, for 

buildings.   

[m] = [

m1 0 0
0 m2 0
0 0 m3

] , {ẍ(t)} = {

ẍ1(t)

ẍ2(t)

ẍ3(t)
}, 

 [c] = [

C1 0 0
0 C2 0
0 0 C3

] , {ẋ(t)} = {

ẋ1(t)

ẋ2(t)

ẋ3(t)
} ,  

[k] = [

k1 0 0
0 k2 0
0 0 k3

]  , {x(t)} = {

x1(t)

x2(t)

x3(t)
}   and 

{fimp.(t)} = {

fimp.1(t)

fimp.2(t) − fimp.1(t)

−fimp.2(t)

}  

The contact element is activated when there is an 

impact in the pounding model, which is based on contact 

force. The non-linear damper is only triggered during the 

approach phase of a collision, and the contact element is 

thought to be a Hertzdamp model (Non-Linear 

Viscoelastic Model) where a non-linear spring applying 

the Hertz law of contact is applied. When two nearby 

constructions collide, the impact force is stated as follows: 

Fimp.i(t) = 0    for δ(t) ≤    (no contact) (2-a) 

Fimp.i(t) = β̅δ
3
2(t) + c̅(t)δ̇ij(t) for δ(t) > 0 and δ̇

> 0   

(contact − 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑝𝑒𝑟𝑖𝑜𝑑)  

(2-b) 

 

[m]{ẍ(t)} + [c]{ẋ(t)} + [k]{x(t)} + {fimp.(t)}

= −[m]{ẍg(t)} 

(1) 
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Fimp.i(t) = β̅δ
3
2(t) for δ(t) > 0 𝑎𝑛𝑑 δ̇ ≤ 0  

 (contact − restitution period) 

(2-c) 

where δ(t) describes the deformation of the 

colliding structures, δ̇ij(t) denotes the relative velocity 

between them and may be expressed as following: 

δ(t) = x1(t) − x2(t) − d  ;  

c̅(t) = 2ξ̅√β̅√δ(t)
m1m2

m1 + m2

 
(3) 

where m1 and m2 are the masses of colliding 

structures, and β̅ is the impact stiffness parameter. It 

depends on the geometry and material properties of the 

colliding structures, and it is considered to be 2.75x109 

𝑁/𝑚
3

2⁄  see, Jankowski [35]. Moreover, d is the initial gap 

distance, and ξ̅ is the impact damping ratio. It can be 

obtained as following: 

ξ̅ =
1 − cr

cr
( α+0.204)

+ 3.351crπ
 ;   α = 1.05cr

0.653 (4) 

where cr is the coefficient of restitution, which 

accounts for the amount of dissipated energy during 

impact. It depends on both the geometry and the material 

properties of the impacting surfaces and on the value of the 

relative prior-impact velocity of colliding surfaces, ẍg(t) is 

the acceleration of the ground motion [36].  

 

III. VERIFICATION WITH PREVIOUS 

STUDIES  

The efficiency of the model used in the current research 

was tested by comparing its results with the experimental 

results reported by [34]. Three adjacent SDOF buildings 

(see Fig. 2) with structural properties shown in Table 1 

were experimentally tested under the 1989 Loma Prieta, 

NS (Corralitos station) with an amplification of 50% from 

ground motion data. The coefficient of restitution "cr" is 

considered to be 0.4; see [36]. 

 

Table 1.  Characteristics of different buildings see 

[34]. 

 Tower 1 Tower 2 Tower 3 

Mass (kg) 90.5 48 90.5 

Stiffness 

(N/m) 
18532.5 19390.8 18532.5 

Time 

period T(s) 
0.439 0.31 0.439 

Damping 

ratio (%) 
0.34 0.25 0.38 

 

 

Fig. 2. Experimental study carried out by El-Khoriby et al. 

(2015) 

 

Fig. 3 shows a comparison between the displacement time 

history for the independent behaviour (gap size =6 cm) for 

experimental and numerical studies. 
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a b 

Fig. 3.  displacement time history for independent behavior (a) The experimental study El-Khoriby et al. (2015), (b) the 

numerical study 

Fig. 4 shows the acceleration time history for three 

adjacent buildings in the case of a gap size of 4 cm. 
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Fig. 4.  Acceleration time history for independent behaviour (a) The excremental study El-Khoriby et al. (2015), (b) the 

numerical study 

 

This comparison shows that the results from the 

mathematical model give a good result when 

compared to the experimental study. Table 2 shows 

the difference ratio between the experimental and the 

numerical study. 
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Table 2. The difference ratio between the experimental and the numerical study 

case 
Max. displacement for the 

Independent case ( gap size 6 cm) 
Difference (%) 

Max. acceleration for the 

Pounding case (gap size 4 cm) 
Difference (%) 

 Experimental Numerical  Experimental numerical  

Tower 1 0.038 0.042 10.53 10.88 10.02 7.9 

Tower 2 0.032 0.033 3.1 55.98 55.8 0.32 

Tower 3 0.037 0.041 10.8 43.77 33.86 22.6 

 

IV. EFFECT OF COEFFICIENT OF 

RESTITUTION  

A study was conducted to determine how the coefficient of 

restitution affected the structural response. In this 

parametric study, we will study the effect of changing the 

coefficient of restitution on the seismic response 

(Acceleration time history) and on the pounding force. 

Different values of the coefficient of restitution Cr range 

from 0.4 to 0.65. Fig. 5 shows the relation between the 

coefficient of restitution and the peak acceleration for 

tower 1, tower 2, and tower 3, respectively. 

 

 

 

Fig. 5.  Peak acceleration with relation to coefficient of 

restitution for (a) Tower 1, (b) Tower 2, and (c) Tower 

3. 

 

The results show a uniform decrease in the peak 

acceleration when the coefficient of restitution increases; 

see Fig. 5. 
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Fig. 6. Peak impact force with relation to coefficient of 

restitution (a) between Tower 1 and Tower 2; (b) 

between Tower 2 and Tower 3. 

 

Fig. 6 shows the peak value of impact forces 

versus the coefficient of restitution. The results show that 

when the coefficient of restitution increases, the peak 

impact force decreases uniformly. The peak impact forces 

between tower 1 and tower 2 are 1715 N, 3445 N for CR = 

0.4 and 1251 N, 2926 N for CR = 0.65, respectively. 

 

V. EFFECT OF STIFFNESS OF IMPACT 

SPRING 

The impact stiffness parameter is one of the most 

significant factors that affect the impact force during a 

collision. Fig. 7 shows the peak values of impact forces 

with respect to impact spring stiffness. It can be seen from 

the figure that the general trend for all impact forces 

between adjacent towers increases with increasing impact 

spring stiffness.  

Different values of the impact spring stiffness were taken 

from 1.25 ∗ 109 N/mm^(3⁄2)  to 4 ∗ 109N/mm^(3⁄2)  the 

peak impact force between tower 1 and tower 2 show 

nearly linear increase from 950.09 N to 2295.27 N, while 

between tower 2 and tower 3 show nearly linear increase 

from 1674.75 N to 4677.64 N. 

 

 

Fig. 7. Peak impact force with respect to impact stiffness 

(a) between Tower 1 and Tower 2; (b) between Tower 2 

and Tower 3. 

 

VI. CONCLUSION 

The nonlinear viscoelastic model (Hertzdamp) was used in 

this study's Matlab code to simulate pounding between a 

series of three adjacent structures with different natural 

frequencies. The numerical model was initially verified by 

contrasting its predictions with the experiment results on 

three adjacent buildings. The results revealed that the 
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mathematical model is in good agreement with the 

experimental study. The paper also investigates the effect 

of different values of the coefficient of restitution on their 

pounding response, as well as, the effect of different 

values of the impact spring stiffness on the peak impact 

force between series of adjacent buildings. 

As a general trend, it is observed that, the higher the 

restitution coefficient, the lower the pounding force 

between adjacent structures. The coefficient of restitution 

was changed from 0.4 to 0.65, and it was concluded that 

the pounding force between the first and second towers 

decreased in the case of the restitution coefficient of 0.65 

by 27% than its value in the case of the restitution 

coefficient of 0.4 where the pounding force between the 

second and third towers decreased in the case of the 

restitution coefficient of 0.65 by 12.5% than its value in 

the case of the restitution coefficient of 0.4, also. 

Moreover, the results revealed that, the general trend for 

all impact forces between adjacent towers increases with 

increasing impact spring stiffness. 
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