
International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1291

Survey on Implementation of Ant Colony
Optimization in Load Balancing

Elnaz Shafigh Fard

Faculty of Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract— Ant colony optimization (ACO) takes inspiration
from the foraging behavior of real ant species. This ACO
exploits a similar mechanism for solving optimization
problems 0for the various engineering field of study especially
load balancing.
In distributed systems, load balancing is one of the central
problems that have to be solved in parallel and Grid
computation. This paper tries to show some kinds of load
balancing techniques for massive computing.
This paper reviews the different load balancing methods
includes hardware and software and compares them.
Furthermore, it explains their advantages and a disadvantage,
showing which method is more adaptive and flexible.
Keywords— Ant colony optimization, load balancing,
hardware, software.

I. INTRODUCTION
Grid Computing is a new way of parallel and distributed
computing [R.U. Payli, E. Yilmaz, A. Ecer, H.U. Akay, and S.
Chien, 2004]. Using grid computing, an individual can unite
pools of servers, storage systems and networks into a large
system. End users and applications take this environment as a
big virtual computing system. The systems connected together
by a grid might be in the same room or distributed globally,
running on multiple hardware platforms and different
operating systems, and owned by different Organizations.
One of the main features of a distributed system
[Javier Bustos-Jiménez, Denis Caromel, José M. Piquer,
2007] is the ability to redistribute tasks among its processors.
This requires a redistribution policy to enhance productivity
by dispatching the tasks in such a way that the resources are
used efficiently, i.e. minimizing the average idle time of the
processors and improving application’s performance. This
technique is known as load balancing. Moreover, when the
redistribution decisions are taken at runtime, it is called
dynamic load balancing.
About load balancing that is one of the most challenging items
in traditional distributed system a lot of works has been done.
In a number of studies [Casavant and Kuhl, 1994], [Xu and
Lau, 1997], [Zaki, Li, and S. Parthasarathy, 1996]. Load

balancing mechanisms can be broadly categorized as global
or local , centralized or decentralized, dynamic or static,
and periodic or non-periodic [Baldeschwieler, Blumofe,
Brewer, Atlas,1995].
In a centralized algorithm, there is a central scheduler which
gathers all load information from the nodes and makes
appropriate decisions. However, this approach is not scalable
for a vast environment like the Grid. In decentralized models,
there is not usually a specific node known as a server or
collector. Instead, all nodes have information about some or
all other nodes. This leads to a huge overhead in
communication. Furthermore, this information is not very
reliable because of the drastic load variation in the Grid and
the need for frequent updating.
Static algorithms are not affected by the system state since
their behavior is predetermined. On the other hand, dynamic
algorithms make decisions according to the system state. The
state refers to certain types of information, such as the number
of jobs waiting in the ready queue, the current job arrival rate,
etc. Dynamic algorithms tend to have better performance than
static ones. Some dynamic load balancing algorithms are
adaptive; in other words, dynamic policies are modifiable as
the system state changes. [M.Saleh, H.Deldari, B. Mokarram,
2008]
 A good description of customized load balancing strategies
for a network of workstations can be found in [Zaki, Li, and
Parthasarathy,1996]. More recently, [Houle, Symnovis, and
Wood,2002] consider algorithms for static load balancing in
tree model, assuming that the total load is fixed. On the
contrary, in the traditional distributed systems for which a lot
of algorithms have been proposed, few have focused on grid
computing. This is due to the innovation and the specific
characteristics of this infrastructure.
Load balancing algorithms can be defined by their
implementation of the following policies [Karatza,1994]
[Anamika Jain and Ravinder Singh, 2013] [Ardhendu Mandal
and Subhas Chandra Pal, 2010][A.S Manekar, M.D
Poundekar, H.Gupta, M.Nagle,2012] [
L.Hima,2011][32][33] [Deepika, Divya Wadhwa and Nitin
Kumar, 2014]:

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1292

• Information policy specifies what workload information to
be collected, when it is to be collected and from where.
• Triggering policy determines the appropriate time to start a
load balancing operation.
• Resource type policy classifies a resource as server or
receiver of tasks according to its availability status.
• Location policy uses the results of the resource type policy
to find a suitable partner for a server or receiver.
• Selection policy defines the tasks that should be transferred
from overloaded resources (source) to the idlest resources
(receiver).

II. PROPERTIES OF DISTRIBUTED LOAD
BALANCING

2.1. Global vs. Local Strategies [Ankush P. Deshmukh, K.
Pamu, 2012][Ardhendu Mandal, Subhas Chandra Pal,2010][
G.Sharma, J. Kaur,2013][32][33] [Deepika, Divya Wadhwa
and Nitin Kumar, 2014]
Global or local policies answer the question of what
information will be used to make a load balancing decision. In
global policies, the load balancer uses the performance
profiles of all available workstations. In local policies,
[Ankush P. Deshmukh, K. Pamu, 2012] workstations are
partitioned into different groups. In a heterogeneous NOW,
the partitioning is usually done such that each group has
nearly equal aggregate computational power. The benefit of a
local scheme is that performance profile information is only
exchanged within the group.
The choice of a global or local policy depends on the behavior
of an application. For global schemes, balanced load
convergence is faster compared to a local scheme since all
workstations are considered at the same time.
However, this requires additional communication and
synchronization between the various workstations; the local
schemes minimize this extra overhead. But the reduced
synchronization between workstations is also a downfall of
the local schemes if the various groups exhibit major
differences in performance.
[ZAKI96] notes that if one group has processors with poor
performance (high load), and another group has very fast
processors (little or no load), the latter will finish quite early
while the former group is overloaded.
2.2 Dynamic and Static Load Balancing
A load balancer with dynamic load balancing allocates/re-
allocates resources at runtime and uses the system-state
information to make its decisions. Adaptive load balancing
algorithms are a special class of dynamic algorithms. They
adapt their activities by dynamically changing their
parameters, or even their policies, to suit the changing system

state. DLB is used to provide application level load balancing
for individual parallel jobs. It ensures that all loads submitted
through the DLB environment are distributed in such a way
that the overall load in the system is balanced and application
programs get maximum benefit from available resources.
Every dynamic load balancing method must estimate the
timely workload information of each resource. This is the key
information in a load balancing system where responses are
given to following questions: (i) how to measure resource
workload; (ii) what criteria are retaining to define this
workload; (iii) how to avoid the negative effects of resource
dynamicity on the workload; and, (iv) how to take into
account the resource heterogeneity in order to obtain an
instantaneous average workload representative of the system.
[Ardhendu Mandal, Subhas Chandra Pal, 2010]
According to the taxonomy proposed in [Casavant and
Kuhl,1988], the first distinction is between static and dynamic
algorithms.
In static algorithms, information about the total mix of
processes in the system is assumed to be known by the time
the executable image of a program is linked, and this
information is used to assign a processor to the program: each
time the program is started, the corresponding process is run
on that processor. In dynamic algorithms, no (or little) a priori
information is required about resource demands of processes,
and no assumption is made about what the system state will be
at program execution time. When local conditions make a
process migration desirable, the location policy selects a
suitable machine for receiving the process. [Sherihan Abu
Elenin and Masato Kitakami, 2011][Abhijit A. Rajguru, S.S.
Apte,2012][[Abhijit A. Rajguru, S.S. Apte, 2012] [Deepika,
Divya Wadhwa and Nitin Kumar, 2014] R.Prajapati,
D.Rathod, S.Khanna, 2015] [N.Goyal, 2013].
In static load balancing, the performance of the processors is
determined at the beginning of execution. Then depending on
their performance, the work load is distributed in the
beginning by the master processor [Baldeschwieler, Blumofe,
Brewer, Atlas, 1995] [Sherihan Abu Elenin and Masato
Kitakami, 2011]. The slave processors calculate their
allocated work and submit their result to the master. A task is
always executed on the processor to which it is assigned, that
is static load balancing methods are no preemptive.
The goal of static load balancing method is to reduce the
overall execution time of a concurrent program while
minimizing the communication delays. A general
disadvantage of all static schemes is that the final selection of
a host for process allocation is made when the process is
created and cannot be changed during process execution.
[Sherihan Abu Elenin and Masato Kitakami, 2011]

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1293

Fig.1: Dynamic policies for location and information.

The family of dynamic algorithms may be further refined (see
figure 1).
In algorithms with blind location, the choice of an execution
site is made without any information about the current
conditions of the remote machines. Conversely, for
conditional location, the choice of a receiver machine is based
on a global knowledge or a partial knowledge of the system
state, according to whether the decision is made with
information about all the machines in the network, or about a
subset. The global knowledge may be maintained on a single
machine (centralized information) or on all the machines of
the network (distributed information). Finally, the migration
decision may be taken by a single machine (centralized
decision) or else may be taken by different machines
(distributed decision).
Like any taxonomy, this one is also not perfect, and it is
difficult to find the right place for a few algorithms.
Static algorithms have two drawbacks. First, their execution
cost is high; hence they cannot be used to react to fast changes
in the system. Second, when the variability of execution time
is taken into account, they are done with exponential
assumptions (in order to be able to obtain exact results), when
in fact observations on real systems invalidate these
assumptions.

Static algorithms may be worthwhile for computing systems
that execute periodically a set of programs with well-known
behavior (e.g., real-time systems). This is clearly not the case
for networks of workstations. Thus, the remainder of this
section will be devoted to dynamic algorithms.

2.3 Centralized and Decentralized Load Balancing: [Ankush
P. Deshmukh, K. Pamu, 2012][32]
A load balancer is categorized as either centralized or
distributed, both of which define where load balancing
decisions are made. In a centralized scheme, the load balancer
is located in one master workstation node and all decisions are
made there. In a distributed scheme, the load balancer is
replicated in all workstations.
Once again, there are tradeoffs associated with preferring one
location scheme over the other. [Ankush P. Deshmukh, K.
Pamu, 2012]
 For centralized schemes, the reliance on one central point of
balancing control could limit future scalability. Additionally,
the central scheme also requires an “all-to-one” exchange of
profile information from workstations to the balancer as well
as a “one-to-all” exchange of distribution instructions from
the balancer to the workstations. The distributed scheme helps
solve the scalability problems, but at the expense of an “all-to-
all” broadcast of profile information between workstations.
However, the distributed scheme avoids the “one-to-all”
distribution exchange since the distribution decisions are
made on each workstation.
In this section, the paper shows differences of load balancing
algorithms that are categorized in two tables (1, 2) based on
centralized and decentralized:

Table 1: Parametric Comparison of Load Balancing

Algorithms (centralize)

P

ar
am

et
er

s

C
en

tr
al

Q

ue
ue

C
en

tr
al

M

an
ag

er

Overload
Rejection

YES No

Fault
Tolerant

YES YES

Forecasting
Accuracy

LESS More

Stability SMALL Large
Centralized/

Decentralized

C

C

Dynamic/ DY S

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1294

Static

Cooperative YES

YES

Process
Migration

NO NO

There are six types of decentralized load balancing as shown
in table 2: Round Robin algorithm, Randomized algorithm,
local Queue, Ant colony, agent based Algorithm, and
Threshold algorithm.

Table 2: Parametric Comparison of Load Balancing
Algorithms (centralize)

[Sherihan Abu Elenin and Masato Kitakami, 2011][
Deepika, Divya Wadhwa and Nitin Kumar,2014]

P
ar

am
et

er
s

R
ou

nd

R
ob

in

R
an

do
m

Lo
ca

l
Q

ue
ue

A
nt

 c
ol

on
y

ag
en

ts

T
hr

es
ho

ld

Overload
Rejection

No No YES No YES No

Fault
Tolerant

No No YES
YE
S

No No

Forecastin
g

Accuracy
More

Mor
e

LESS
YE
S

No
Mor

e

Centralize
Decentrali

zed
D D D D D D

Stability Large
Lar
ge

SMA
LL

YES No
Larg

e
Dynamic/

Static
S S DY DY DY S

Cooperati
ve

NO NO YES

YES
YE
S

YES

Process
Migration

NO NO YES NO
YE
S

NO

Resource
Utilization

LESS
LE
SS

MOR
E

MOR
E

LE
SS

LES
S

Round Robin algorithm [Xu and Lau,1997][Sherihan Abu
Elenin and Masato Kitakami,2011][Abhijit A. Rajguru, S.S.
Apte,2012][Deepika, Divya Wadhwa and Nitin Kumar,2014]
distributes jobs evenly to all slave processors. All jobs are
assigned to slave processors based on Round Robin order,
meaning that processor choosing is performed in series and

will be back to the first processor if the last processor has
been reached. Processor choosing is performed locally on
each processor, independent of allocations of other processors.
Advantage of Round Robin algorithm is that it does not
require inters process communication. In general, Round
Robin is not expected to achieve good performance. [Sherihan
Abu Elenin and Masato Kitakami, 2011]
Randomized algorithm [Xu and Lau,1997] uses random
numbers to choose slave processors. The slave processors are
chosen randomly following random numbers generated based
on a statistic distribution. Randomized algorithm can attain
the best performance among all load balancing algorithms for
particular special purpose applications.
In Central Manager Algorithm that was categorized in table 1
[Xu and Lau,1997], in each step, central processor will choose
a slave processor to assign a job. The chosen slave processor
is the processor with the least load. The central processor is
able to gather all slave processors’ load information; thereof
the choice based on this algorithm would be possible. The
load manager makes load balancing decisions based on the
system load information, allowing the best decision when the
process is initiated. High degree of inter-process
communication could create a bottleneck state. [Sherihan Abu
Elenin and Masato Kitakami, 2011]
In Threshold algorithm [Xu and Lau,1997], the processes are
assigned immediately to hosts upon creation. Hosts for new
processes are selected locally without sending remote
messages. Each processor keeps a private copy of the
system’s load. The load of a processor can be characterized by
one of the three levels: under loaded, medium and overloaded.
Two thresholds parameters t_under and t_upper can be used to
describe these levels. Under loaded: load < t_under, Medium:
t_under ≤ load ≤ t_upper, and Overloaded: load > t_upper.
[Sherihan Abu Elenin and Masato Kitakami, 2011]
Initially, all the processors are considered to be under loaded.
When the load state of a processor exceeds a load level limit,
it sends messages regarding the new load state to all remote
processors, regularly updating them as to the actual load state
of the entire system.

III. ACO ALGORITHMS IN GRID
ACO [Casavant and Kuhl, 1994] C. R. Barde, Snehal Kasar,
Samruddhi Nikam, Shradha Shelar, Nikita Wagh,2014][S.
Suryadevera, J. Chourasia, S.Rathore, A.Jhummarwala,2012]
[N.Goyal, 2013] is inspired by a colony of ants that work
together in foraging behavior. This behavior encouraged ants
to find the shortest path between their nest and food source.
Every ant will deposit a chemical substance called pheromone
on the ground after they move from the nest to food sources

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1295

and vice versa. Therefore, they will choose an optimal path
based on the pheromone value. The path with high pheromone
value is shorter than the path with low pheromone value. This
behavior is the basis for a cooperative communication. There
are various types of ACO algorithm such as Ant Colony
System (ACS), Max- Min Ant System (MMAS), Rank-Based
Ant System (RAS) and Elitist Ant System (EAS) [Xu and
Lau,1997].ACO has been applied in solving many problems
in scheduling such as Job Shop Problem, Open Shop Problem,
Permutation Flow Shop Problem, Single Machine Total
Tardiness Problem, Single Machine Total Weighted Tardiness
Problem, Resource Constraints Project Scheduling Problem,
Group Shop Problem and Single Machine Total Tardiness
Problem with Sequence Dependent Setup Times [Xu and
Lau,1997].
A recent approach of ACO researches in the use of ACO for
scheduling job in grid computing [Zaki, Li, and Parthasarathy,
1996]. ACO algorithm is used in grid computing because it is
easily adapted to solve both static and dynamic combinatorial
optimization problems. In [Houle, Symnovis, and Wood,
2002], ACO has been used as an effective algorithm in
solving the load balancing problem in grid computing. The
process taken by ACO will consider the pheromone value
which depends on the time taken by each resource to process
jobs. It does not consider the capacity of resources such as
their bandwidth, processor speed and load. IN
[Baldeschwieler, Blumofe, Brewer, Atlas,1995], two
distributed artificial life-inspired load balancing algorithm are
introduced, which are ACO and Particle Swarm Optimization
(PSO). In the proposed algorithm, an ant acts as a broker to
find the best node in term of the pheromone value stored in
the pheromone table. The node with the lightest load is
selected as the best node. The position of each node in the
flock can be determined by its load in PSO. The particle will
compare the load of nodes with its neighbors and will move
towards the best neighbor by sending assigned jobs to it. The
proposed algorithm performed better than ACO for job
scheduling where jobs are being submitted from different
sources and different time intervals.
However, PSO uses more bandwidth and communication
compared to ACO. A study in [Karatza, 1994] proposed a new
algorithm that is based on an echo intelligent system,
autonomous and cooperative ants. In this proposed algorithm,
the ants can procreate and also can commit suicide depending
on existing condition. Ant level load balancing is proposed to
improve the performance of the mechanism. Ants are created
on demand during their lives adaptively to achieve the grid
load balancing.
The ants may bear offspring when they detect the

system is drastically unbalanced and commit suicide when
they detect equilibrium in the environment. The ants will care
for every node visited during their steps and record node
specifications for future decision making. Theoretical and
simulation results indicate that this new algorithm surpasses
its predecessor.
However, the pheromone values were not updated in this
proposed algorithm which enables the assignment of jobs to
the same resource. [S. Suryadevera, J. Chourasia, S.Rathore,
A.Jhummarwala, 2012]
3.1 Software Methods
In the last twenty years, researches have been searching for
the techniques to improve traditional method of ant colony
and to increase its speed. By categorizing ant colony into
groups and sending each group to the processors, the speed
application for this beneficial serial algorithm has been
optimized [Glover, Kochenberger, 2003]. This application not
only improves the speed of algorithm but also presents a new
derivation which has positive impact on the results. The major
component is usually between the minor particles and grand
particles of algorithm application.
The most classic suggestion in relation to the parallel method
of application such as the applying on multiprocessors,
graphic processors, and grade environments are good
opportunities for parallel estimations for optimizing the ant
colony results and reducing the time of application
[Pedemonte, Cancela, 2010]. Various methods have been
proposed which can be divided in five groups: 1. Manorial
system 2. Cellular 3. Independent run 4. Multicolony
5. Compounds. [S. Suryadevera, J. Chourasia, S.Rathore,
A.Jhummarwala, 2012] [.Elenin and M.Kitakami, 2011]
[H.Abdul, Nasir,K.Ku, Mohammud,A.Din,2010].
ACO algorithm for load balancing in distributed systems
through the use of multiple ant colonies is proposed in [Chou
and Abraham, 1982]. In this algorithm, information on
resources is dynamically updated at each ant movement. Load
balancing system is based on multiple ant colonies
information. Multiple ant colonies have been adopted such
that each node will send a coloured colony throughout the
network.
Coloured ant colonies are used to prevent ants of the same
nest from following the same route and also enforcing them to
be distributed all over the nodes in the system and each ant
acts like a mobile agent which carries newly updated load
balancing information to the next nodes. This proposed
algorithm has been compared with the work-stealing approach
for load balancing in grid computing.
Experimental result shows that multiple ant colonies work
better than work-stealing algorithm in term of their efficiency.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1296

However, the multiple ant colonies do not consider resources
capacity and jobs characteristics. This can make matching the
jobs with the best resources a difficult task for the scheduling
algorithm. [Ali, A., M.A. Belal and M.B. Al-Zoubi, 2010]][
S. Suryadevera, J. Chourasia, S.Rathore, A. Jhummarwala,
2012]
The overview of mentioned applications shows that the
methods of grand particles manorial and multi-colony are
more reliable. The multi-colony methods have a degree of
flexibility which allows them to partake in several parallel
cases without wasting their functionality. Due to their
flexibility and measurability, they can be conducted in grand
particles. This method has the capacity of hardware
application. The functionality of the minor and major
partition of manorial method stem from the value and
Frequency of information that is present in each tenant.
Generally, the yielded results indicate that grand partition
methods are better than minor ones but when the number of
tenants increase, excessive communication will attack
landlord and conversions will occur in route. The
researchers have suggested the solution of ace crone. The
minor scale manorial method was highly proposed the
application of minor scale method in Graphic processors using
shared memory saved in pheromone. However, the reduction
of communication between central processor and GPU must
be considered. Parallel cellular method and ace crone have the
highest speed and performance.
3.2. Hardware Methods
The problem of this fiscal algorithm will not be solved
even if it is installed as software or a powerful
microprocessor because the presence of an operator and
fetch of hardware will consume time of decoding and
executing.
 The hardware method of multi-colony algorithms in the
hardware application has high speed in comparison with
software. There is no limitation of running the main ant
colony algorithm for the flexibility of software but in case
of hardware, it is challenging to apply hardware method for
the following reasons:
1) Since the amount of pheromone and the produced random
quantity need to be illustrated in decimal form regarding
application limits on logic arrays, there is a problem of
designation.
2) Evaporation and heuristic factor that require multiplication
are not supportable by most fpga arrays.
3) Since choosing the next city based on the distribution
probability factor. Total sum of the previously left factors
should be estimated and for each pheromone matrix a circuit
should be provided. If the number of n in the problem

sources up, there will be the limitations of time and space
appearing on the array surface [Diessel. Gindy, Middendorf,
Guntsch,ScheuermanSchmeck,So,2002]. Large decimals and
repetitions in addition to divisions, the ant colony should be
changed in a way that the result is not influenced by it. Hence,
in some algorithms, the heuristic factors in choosing next
city are ignored instead of decimals. Definite numbers
have been used for powered amounts α and β are
suppositions and shift will function and will be replaced
by multiplication. The entire functions resulting in decimals
are limited.
3.2.1 ID Based Method [Yoshikawa and Terai 2007]

Fig.2: City Selection Diagram

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1297

Ant colony algorithm has some shortcomings:
1. Processing occurs repeatedly and sequentially
2. Pheromone variable value is very little.
3. All the ants should share pheromone variables for transition
and update. Due to the repeated Processing difficulty, parallel
method is perfect.
Block diagram of this method is shown as in figure 2.
Series of ids saved in SRAM memory are used for
managing pheromone. They have the similar structure as the
below.

Fig.3: The relation of processing flow chart with the circuit

As in figure 3, the function of an ant using units is
shown in the beginning; each ant selects randomly a node
or station. After choosing the next station, each ant for each
city drags with 24 bit pheromone from memory and the
remaining bits which control selection and deselect of the
target city uses it. Immediately after choosing city starts
local updating and it does it for all the cities so that
one repetition suggests one solution. In chart 3, methods of
hardware are compared in a summarized form.
3.2.2 Hardware-Software Compound Method
The designation is done on the arrays in a way that C
software and hardware arrays have been planned with
repartition in Verilog language. The designed framework of
algorithm, as shown in figure 4, is composed of two major
sections. Hence, choosing the best route is done by software
and is applied in C language on the hidden processors
NIOSп. Other algorithm calculations are applied by hardware

on array logic which can be reprogrammed. The proposed
solution brings a kind of negotiation between hardware speed
designation and the flexibility of software planning [Hao
Yang,Wei WENG, Chen.Y,2012].

Fig.4: Ant colony circuit chart

3.2.3 Address based method [Shafigh Fard, Monfaredi,
Nadimi,2014]
Modifications on the Ant Colony Algorithm: Some
modifications have been conducted on the algorithm to reduce
hardware costs; for example, simple register shift operations
have been used instead of multiplication operations as well as
a series of simple changes have been conducted in the update
process without defecting the main program to prevent
numbers from being displayed as decimal ones.
The architectural structure: The framework designed for the
algorithm has consisted of a reconfigurable chip so that the
ant colony parameters are defined in two blocks of memory
on reconfigurable chip and all arithmetic operations of the
algorithm are hardware modeled on FPGA logics. Figure 5
shows the presented framework and the connections between
different blocks; as shown in the figure, there are two
independent memories including main parameters of the
algorithm along with evaluation, update, and city selection
units each of which has consisted of a series of sub-blocks.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1298

Fig.5:The architectural structure of the ant colony algorithm
based on the programmable system-on-chip [Shafigh Fard,

Monfaredi, Nadimi,2014]

The next city selection block: As shown in figure 3, this block
consists of two blocks as 1- the control unit and 2- the
arithmetic unit including sub-blocks for generating random
numbers, comparison, and a series of arithmetic operations
based on the Roulette Wheel law. In the following, the blocks
and their functions are discussed in detail.
The control unit: As mentioned in section 2, ants respectively
and node to node carry out traversal operations from the nest
based on the laws of probability to reach the food; however, to
prevent the repetitive selection of a node in the path, it should
be controlled that the traversed nodes are separated from the
ones not traversed. [Shafigh Fard, Monfaredi, Nadimi, 2014]
Inter-chip memories: have been selected and the hardware
core of the ant colony optimization algorithm has been
modeled on FPGA logics. The memory of the control unit
which has been simulated as a multiplexer uses LUTs
distributed in FPGA platform; this N*1 multiplexer is firstly
initialized as n 0-bit inputs to convey the concept of
deselecting the desired city, which takes the flag with value 1
in the multiplexer after repeating the operation and meeting
the condition of selecting the relevant node.
The control unit: As mentioned in section 2, ants respectively
and node to node carry out traversal operations from the nest
based on the laws of probability to reach the food; however, to
prevent the repetitive selection of a node in the path, it should

be controlled that the traversed nodes are separated from the
ones not traversed.

IV. DISCUSSION
Most of approaches based on centralized and decentralized
load balancing methods were reviewed, and some important
techniques were categorized in five groups. Then their
advantages and disadvantages were explained and compared
to each other. At last, swarm method was reviewed and the
result was that this method with good properties has more
advantages in comparison to other techniques.

V. CONCLUSION
For clear of operation software and hardware, table 3 shows
speed of running ant colony in platform hard and soft which
has been discussed in previous section.

Table.3: Speed Methods Compared

Methods name SPEED UP
Architect for high speed ant colony

optimization(ID BASED)

6.2
HARDWARE-SOFTWARE 7

Address based 110
G.P.U with 8 Cored
G.P.U with 4 cored
G.P.U with 2 cored

7.30
3.65
1.89

As is shown in the table 3, speed up of hardware methods are
more than software methods, because software methods run in
CPU which has a processor in compare to hardware devices
that have a lot of process elements to parallel process
applications.

VI. ACKNOWLEDGEMENT
I would like to express my very great appreciation to Dr. Safi
and Dr. Nadimi, for their valuable and constructive
suggestions during the planning and development of this
research work. Their willingness to give their time so
generously has been very much appreciated. Lastly, I wish to
thank my parents for their support and encouragement
throughout my study.

VII. AUTHOR’S CONTRIBUTIONS
This paper is resulting work of elnaz shafigh fard.

VIII. ETHICS
There isn't any ethical problem because this work is survey of
load balancing and different methods of it and there isn't any
work similar to this work and no other author is in this paper.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1299

REFERENCES
[1] R.U. Payli, E. Yilmaz, A. Ecer, H.U. Akay, and S.

Chien. A Dynamic Load Balancing Tool for Grid
Computing. Parallel CFD Conference, Grand Canaria,
Canary Islands, Spain, May 24-27, 2004.

[2] Ardhendu Mandal, Subhas Chandra Pal. An Empirical
Study and Analysis of the Dynamic Load Balancing
Techniques Used in Parallel Computing Systems in the
Proceedings of ICCS-2010, 19-20 Nov, 2010

[3] Anamika Jain and Ravinder Singh.” Review of Peer to
Peer Grid Load Balancing Model Based on Ant Colony
Optimization with Resource Management”.
International Journal of Advanced Research in
Computer Science and Software Engineering.pp 503-
507.2013

[4] A.S Manekar, M.D Poundekar, H.Gupta, M.Nagle. A
Pragmatic Study and Analysis of Load Balancing
Techniques in Parallel Computing. International Journal
of Engineering Research and Applications. Vol. 2,
Issue4, July-August 2012, pp.1914-1918.

[5] Abhijit A. Rajguru, S.S. Apte. A Comparative
Performance Analysis of Load
Balancing Algorithms in Distributed System
using Qualitative Parameters. International Journal of
Recent Technology and Engineering. Volume-1, Issue-3,
August 2012.

[6] Ankush P. Deshmukh, K. Pamu. Applying Load
Balancing: A Dynamic Approach. International Journal
of Advanced Research in Computer Science and
Software Engineering. Volume 2, Issue 6, June 2012.

[7] Sherihan Abu Elenin and Masato Kitakami, Performance
Analysis of Static Load Balancing
in Grid, International Journal of Electrical & Computer
Sciences IJECS-IJENS Vol: 11 No: 03.june 2011.

[8] Deepika, Divya Wadhwa and Nitin Kumar. Performance
Analysis of Load Balancing Algorithms in Distributed
System. Advance in Electronic and Electric Engineering.
ISSN 2231-1297, Volume 4, Number 1 (2014), pp. 59-
66.

[9] C. R. Barde, Snehal Kasar, Samruddhi Nikam, Shradha
Shelar, Nikita Wagh. ANT Algorithm for Load
Balancing Problem in FTP Server. International Journal
of Emerging Technology and Advanced Engineering.
Volume 4, Issue 2, February 2014.

[10] Ali, A., M.A. Belal and M.B. Al-Zoubi, 2010. Load
balancing of distributed systems based on multiple ant
colonies optimization. Am. J. Applied Sci., 7: 428-433.

[11] T.L. Casavant and J.G. Kuhl. A taxonomy of scheduling
in general purpose distributed computing systems. IEEE

Transactions on Software Engineering, 14(2):141–153,
1994.

[12] M. Houle, A. Symnovis, and D. Wood. Dimension-
exchange algorithms for load balancing on trees. In
Proc. of 9th Int. Colloquium on Structural Information
and Communication Complexity, pages 181–196,
Andros,Greece, June 2002.

[13] H.D. Karatza. Job scheduling in heterogeneous
distributed systems. Journal. of Systems and Software,
56:203–212, 1994

[14] Baldeschwieler, J. E, Blumofe, R.D, Brewer, E.A (1995)
Atlas: An Infrastructure for Global Computing. Proc. of
HPCN’95, High Performance Computing and
Networking Europe. Springer, Berlin Heidelberg, pp.
582-587 .

[15] C.Z. Xu and F.C.M. Lau. Load Balancing in Parallel
Computers: Theory and Practice. Kluwer, Boston, MA,
1997

[16] M.J. Zaki, W. Li, and S. Parthasarathy. Customized
dynamic load balancing for a network of workstations.
In Proc. of the 5th IEEE Int. Symp. HDPC, pages 282–
291,1996

[17] Casavant T L and Kuhl 1 G 1988 A taxonomy of
scheduling in general-purpose distributed computing
systems IEEE Trans. Sofrware Ens. SE-14 141-54.

[18] F. Glover, G. Kochenberger (Eds.), Handbook of
Metaheuristics, International Series in Operations
Research & Management Science, 57, Springer, 2003.

[19] M. Pedemonte, H. Cancela, A cellular ant colony
optimisation for the generalized Steiner problem,
International Journal of Innovative Computing and
Applications 2 (3) (2010) 188–201.

[20] Chou T and Abraham J A 1982 Load balancing in
distributed systems IEEE Trans. Software Ens. SE4
401-12.

[21] Diessel.H.ELGindy,M.Middendorf,M.Guntsch,B.Scheue
rmann,H.Schmeck,K.So,”Population Based ant colony
optimization on FPGA”,in:IEEE International
conference on Field-Programmable
Technology(FPT),2002,PP.125-132.

[22] Yoshikawa, M and Terai,H 2007 : Architecture for high
speed ant colony optimization .oroceedings of IEEE
International Conference on information Reuse and
integration ,lasVegas,NV, 1-5

[23] Li.S,Hao Yang.M ,Wei WENG.CH,Hong Chen.Y, Ant
Colony Optimization design and its FPGA
implementation,.IEEE International Symposium on
Intelligent Signal Processing and Communication system
PP 262-265,November 4-7,2012.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1300

[24] Elnaz Shafigh Fard, Khalil Monfaredi, Mohammad H.
Nadimi, AN AREA-OPTIMIZED CHIP OF ANT
COLONY ALGORITHM DESIGN IN HARDWARE
PLATFORM USING THE ADDRESS-BASED
METHOD, International Journal of Electrical and
Computer Engineering , Vol 4, No 6: December 2014.

[25] MOHSEN AMINI SALEH, HOSSEIN DELDARI AND
BAHARE MOKARRAM DORRI, “ Balancing Load in
a Computational Grid Applying Adaptive, Intelligent
Colonies of Ants, “Informatics, vol. 32, Pages 327–335,
2008.

[26] Lalitha Hima, Venkatesan, Karunya university,
coimbatore, India “Perspective Study on Resource level
Load balancing in Grid Computing Environments” 2011
IEEE.

[27] Gaurav Sharma, Jagjit Kaur Bhatia, A Review on
Different Approaches for Load Balancing in
Computational Grid in Journal of Global Research in
Computer Science, Volume 4, No. 4, April 2013.

[28] Ramesh Prajapati, Dushyantsinh Rathod, Samrat
Khanna, COMPARISON OF STATIC AND DYNAMIC
LOAD BALANCING IN
GRID COMPUTING , International Journal For
Technological Research In Engineering, Volume 2,
Issue 7, March-2015.

[29] Nandita Goyal, Dynamic Load Balancing Algorithm for
Cloud Computing using Mobile Agents, International
Journal of Advanced Research in
Computer Science and Software Engineering, Volume 3,
Issue 12, December 2013.

[30] Sowmya Suryadevera, Jaishri Chourasia, Sonam
Rathore, Abdul Jhummarwala, Load Balancing in
Computational Grids Using Ant Colony Optimization
Algorithm, International Journal of Computer &
Communication Technology (IJCCT) ISSN (ONLINE):
2231 - 0371 ISSN (PRINT): 0975 –7449 Vol-3, Iss-3,
2012.

[31] Husna Jamal Abdul Nasir,Ku Ruhana Ku
Mohammud,Aniza Mohamed Din, load balancing using
enhanced ant algorithm in Grid computing, second
international conference on computational intelligence,
modeling and simulation,2010 IEEE.

[32] Essays, UK. (November 2013). Dynamic Load
Balancing Algorithms Computer Science Essay.
Retrieved from
https://www.ukessays.com/essays/computer-
science/dynamic-load-balancing-algorithms-computer-
science-essay.php?cref=1

[33] Essays, UK. (November 2013). Load Balancing
Algorithms In Grid Environment Information
Technology Essay. Retrieved from
https://www.ukessays.com/essays/information-
technology/load-balancing-algorithms-in-grid-
environment-information-technology-essay.php?cref=1

[34] Javier Bustos-Jimenez, Denis Caromel and Jose
M.Piquer, Load Balancing: Toward the Infinite Network
and Beyond,springer 2007.

