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Abstract— Dynamic stability of a damped flexible Rotor 
system is studied in this work. Analysis of a damped 
rotating shaft with multiple discs are carried out by, 
varying the rotor offset positions in order to investigate 
the effect on critical speed and frequency of the system. 
From this analysis, it is observed that by varying the 
rotor offset positions, the modal mass participation varies 
and which in turn cause a variation in the critical speed 
and frequency of the system. This study also extends a 
detailed evaluation of damped rotor stability. Through 
this analysis it is observed that the system become 
unstable beyond its critical speed. The stabilizing effects 
of anisotropic bearing stiffness and external damping are 
also demonstrated. The effect of unbalance in the rotating 
machinery is evaluated in the last section.  
Keywords—  Analysis, Bearing, Critical speed, Internal 
damping, Rotor, Unbalance. 

 
I.  INTRODUCTION 

The predictive maintenance concepts with vibration 
measurements have a greater application in rotor 
dynamics [1]. The future possibility of vibration based 
condition monitoring of rotating machines are described 
by Jyoti K.Sinha et.al. [2]. A.W.Lees et.al [3] seeks to 
give an overview of the recent developments in vibration-
based condition monitoring which has considerable 
practical importance. Vibration based condition 
monitoring has become well accepted and widely used to 
identify faults in rotating machines. A finite element 
dynamic modal for rotor bearing system, which accounts 
gyroscopic moments and anisotropic bearings are 
developed using a modal truncation method by Y.A. 
Khulief et.al [4]. D.Combescure et.al [5] presents a 
refined finite element modeling used for dynamic analysis 
of large rotating machines. The stability domain of an 
internally damped flexible spinning shaft, which is driven 
by a non-ideal source, is studied by S.S. Dasgupta et.al 
[6]. J.K. Sinha et.al [7] proposes a method that can 
reliably estimate both the rotor unbalance and 
misalignment from a single machine run-down. An 

alternative balancing methodology for rotating machinery 
is presented by T.S. Morais et.al [8]. Chun-biao Gan et.al 
[9] extended the nonparametric modeling technique to the 
uncertain Jeffcott rotor with disc offset, and the random 
matrix model is established. The parametric instability of 
flexible rotor-bearing system under time-periodic base 
angular motions is analyzed by Qinkai Han et.al [10]. 
Rotor dynamic instability, a self-excitation of the rotor-
bearing system, can occur without prior warning and has 
catastrophic potential. Instabilities pose a serious 
challenge to the designer, since there are many different 
mechanisms to be dealt with. Therefore, it is necessary to 
analyze the dynamic characteristics of the rotor system to 
guarantee the rotating machinery is running safely. Finite 
element simulation of rotor-systems can be improved by 
modeling internal damping effects. This provides an 
added dimension in studying turbo machinery stability 
and can assist the engineer in proper selection of bearing 
characteristics to insure safe high-speed operation. 

 
II.  FINITE ELEMENT MODELING OF 

FLEXIBLE ROTOR-BEARING SYSTEM 
A rotating structure generally consists of rotating parts, 
stationary parts, and bearings linking the rotating parts to 
the stationary parts and/or the ground. The model consists 
of two rigid discs mounted on a uniform flexible mass 
less shaft supported by two identical flexible bearings at 
each side. The damping of the shaft and bearings are 
taken into account. The shaft is modeled with 9 nodes and 
8 elements equal spaced every 0.05 meters along the 
shaft. The disks were modeled on two nodes of the shaft 
and the moments of inertia and masses were calculated 
for each disk and input as real constants for each element. 
The bearings are modeled at the beginning and end of the 
shaft. The stiffness and damping constants in the lateral 
directions are input as real constants. The effect of 
internal viscous damping is also incorporated into the 
finite element model. 
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Fig. 1: Flexible two rotor system 

 
2.1. The disk 
The disk is modeled with Mass 21 element and is defined 
by a single node. The degrees of freedom can be extended 
up to six directions: translation in the x, y and z directions 
and rotation about the x, y and z axes. The rotary inertia 
effects can be included or excluded and element can be 
reduced to a 2D capability. If the element has only one 
mass input, it is assumed that mass acts in all coordinate 
directions. In this paper, two disks are identical with 
md=2.4Kg, Id=0.006 Kgm2, Ip=0.012 Kgm2. 
2.2. The flexible shaft 
The shaft is modeled with the element Beam 188, is a two 
noded beam element in 3D with tension, compression, 
torsion and bending capabilities and is developed based 
upon Timoshenko beam theory. The element has six 
degree of freedom at each node, translation in the nodal x, 
y and z directions and rotation about the nodal x, y and z 
axes. This beam element consists of different section 
shapes so that it can be modeled with desired section 
shapes and there by real constants for the chosen sections 
are automatically included. 
2.3. Bearing support 
The bearings are flexible in nature and are fixed to the 
base. Bearing supports are modeled using Combin14 
element, has longitudinal or torsional capability in one, 
two, or three dimensional applications. The longitudinal 
spring-damper option is a uniaxial tension-compression 
element with up to three degrees of freedom at each node: 
translations in the nodal x, y, and z directions. No 
bending or torsion is considered. The torsional spring-
damper option is a purely rotational element with three 
degrees of freedom at each node: rotations about the 
nodal x, y, and z axes. 

III.  VALIDATION 
In order to verify the validity of the analysis code 
presented in this paper, we will compare our analysis 
results based on our analysis code with the results in the 
Ref.[10]. The results of the whirling frequencies without 
base movements from the reference journal are 
reproduced by using the analysis code 

 
Fig. 2: Whirling frequencies of the system without 

base movements from the reference journal 

 
Fig. 3: Whirling frequencies of the system without 

base movements obtained in this work 
 

 
 

Table 1: Whirling speed 

 Forward Whirling  
Speed 

(rad/sec) 

Backward 
Whirling 

Speed 
(rad/sec) 

Forward  
Whirling 

Frequency (Hz) 

Backward 
Whirling 

Frequency (Hz) 

Values from the Reference Journal 240.5 187 38.27 29.76 

Values obtained by using Analysis 
code 

240.3 187 38.25 29.76 
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IV.  COMPUTATIONS AND DISCUSSIONS 
4.1. Analysis of Flexible rotor System with different 
Rotor offset Positions 
Calculation and analysis of critical speed is one of the 
important tasks of rotor dynamics, which helps to choose 
the balance velocity of the rotor systems. In this section 
the analysis of the critical speed of the flexible rotor 
system with multiple discs are carried out. The analysis is 
carried out by placing the rotor discs at various nodes. 
analysis taking the gyroscopic effect due Here the 
analysis is carried out by placing the rotor disks on 
symmetrical positions, that is, the analysis is carried out 
by placing the rotors at the nodes 2&8, at the nodes 3&7, 
at the nodes 4&5 to study the effect of rotor positions on 
the critical speed and hence the stability of the system. In 
this analysis Campbell diagrams and unbalance response 
diagrams are used to analyze the critical speed. 
The speed of the disc rotating around its own 
geometrical center is called the rotational speed of the 
rotor, which is a given value during the running 
process. The rotating speed of disc around the center 
of the shaft is called the whirl speed of the rotor. The 
line, when the rotational speed and whirl speed of the 
rotor become equal is the 1X line represented in the 
Campbell diagram. Fig 4 to Fig 6 shows the Campbell 
and unbalance response diagram for the rotors at 
different rotor offset positions. The intersection point 
of 1X line and the curves in the Campbell diagram 
corresponds to the critical speed of the System. From 
the Campbell diagram it is clear that the net effect of 
the gyroscopic factor would increase the whirl speed 
in forward direction and decrease the whirl speed in 
the backward direction as shown in Table 2.   
Results from the Campbell diagram and unbalance 
response curve shows that forward whirl speed is 
critical but the backward whirl speed is not. This is 
because at backward whirl speed the steady state 
unbalance response curve shows no peak and no 
phase shift. This can be illustrated from the Fig 4 to 
Fig 6. The reason for this behavior is the axial 
symmetry of this two disk rotor system. It is because 

that the backward mode vector is orthogonal to the 
unbalance force vector and as a result energy cannot 
be fed into the backward whirl. When the rotor is not 
axially symmetric both forward and backward whirl 
speed become critical speeds. The results shows that 
the critical speed of the system increases with the 
increase in the degree of rotor offset positions. The 
critical speed of the flexible rotor system varies in the 
range of 1206rpm to 3257rpm, when the positions of 
the rotor discs are changed from the center of the 
shaft towards the end of the shaft. The effect of 
gyroscopic factor on the rotor positions and hence the 
critical speed of the system is also investigated, and 
the results shows that the position of rotor discs 
within the system have a greater influence in the 
action of gyroscopic force on the system. When the 
rotor discs are placed at the center of the shaft, effect 
of gyroscopic force on the critical speed is very less, 
a change of 1.08 % only. Whereas, when the rotor 
discs are positioned at the end of the shaft, the effect 
of gyroscopic force become very critical, a change of 
57.87% on critical speed is obtained. In the case of a 
flexible two rotor system the effect of gyroscopic 
force on the critical speed of the system become more 
prominent when the rotor discs are positioned at the 
end positions of the shaft, rather than at the center 
position. 
 
4.2. Effect of Internal damping in the stability of 
flexible two rotor system 
This analysis extends to a detailed evaluation of 
damped rotor stability of a flexible two rotor system. 
In order to perform the analysis, consider a damped 
flexible two rotor system from the previous analysis 
with maximum critical speed. Here the effect of 
internal viscous damping is incorporated into the 
finite element model to evaluate the damped rotor 
stability. The internal damping is given to the system 
as a material property. In this work we are providing 
a material damping co efficient of 0.0002/s.
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Fig.4: Campbell and Unbalance response diagram when rotors are placed on node 2 and 8 
 
 

 

                                
 

Fig.5: Campbell and Unbalance response diagram when rotors are placed on node 3 and 7 
 

 
 

                                
 

Fig.6: Campbell and Unbalance response diagram when rotors are placed on node 4 and 5 
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Table 2: Results from Campbell diagram and unbalance 

response curve 

Rotor 
Position 

1st Forward 
Critical Speed 

(rpm) 

1st Backward 
Critical 

Speed (rpm) 

Unbalance 
response 

peak 
(rpm) 

    
2,8 3257 1540 3264 

3,7 1688 1349 1680 

4,5 1206 1179 1200 

 
Table 3: Effect of gyroscopic factor on critical speed 

Rotor 
Position 

First 
Mode 

frequency 
(Hz) 

1st 
Critical 
Speed 
(rpm) 

Critical 
Speed 

without 
gyroscopi
c effect 
(rpm) 

Percen
tage 

chang
e 

(%) 

     
2,8 34.386 3257 2063 57.87 

3,7 25.049 1688 1502 12.38 

4,5 19.986 1206 1193 01.08 

Internal damping is due primarily to friction at rotor 
component interfaces. When the power inserted by 
the internal damping exceeds the power extracted by 
the external damping, that is, support bearing 
damping and external damping, the rotor will become 
unstable.  

 
Fig.7: Campbell diagram of damped rotor system 

with isotropic bearing 

 
    Results from the Campbell diagram, in Fig.7 shows 
that the characteristic instability of first mode of the 
system occurs at a speed of 3257rpm, which is the first 
critical speed of the system. The first mode remain 
unstable for higher spin speeds, along with the second 
forward mode becoming unstable at second critical speed, 
that is, at 5811rpm. In order to improve the threshold 
speed of instability and to make the system stable over 
higher rotational speeds, two methods are employed. 
Addition of isotropic bearing damping into the system 
stabilize the first and second mode of vibration in the 
system.  
An isotropic bearing damping of Cyy = Czz = 1×102 Ns/m 
is added to evaluate the effect of external damping in the 
threshold speed of instability. From the Campbell 
diagram as shown in Fig.8 it is clear that the threshold 
speed of instability of the rotor system is greatly 
improved. The addition of external damping makes the 
first mode of the system stable to 7973rpm. The system 
becomes unstable at 6739rpm, where the second mode 
becomes unstable. By improving the external damping we 
can improve the threshold speed of instability. 
 

 
Fig.8: Campbell diagram of damped rotor with external 

damping 
 

Removal of isotropic bearing stiffness and the addition of 
anisotropic bearing stiffness, can improve the stability of 
the system to a great extent. An anisotropic bearing 
stiffness of Kyy=1×106 N/m and Kzz =0.8×106 N/m is 
added into the system to evaluate the effect of anisotropic 
bearing stiffness in the threshold speed of instability. 
From the Fig.9, values from the Campbell diagram shows 
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that anisotropic bearing stiffness improves the threshold 
speed of instability of the system. The system is stable up  
to 6820rpm, where the second mode of the system 
becomes unstable. The first mode is stable over 
10000rpm.   

 
Fig.9: Campbell diagram of damped rotor system with 

anisotropic bearing 
 

The benefit of using anisotropic bearing is obtained as a 
result of elliptical orbit formed by asymmetric bearing 
stiffness. The cross coupled force puts maximum amount 
of work into the system when the orbit is circle and this 
work reduces when the orbit become more and more 
elliptical, when the orbit is become more asymmetric. As 
the whirl orbit become more and more elliptical, the work 
input from the cross coupled force decreases towards 
zero, whereas the work taken away by the damping does 
not. Stability is achieved by increasing the ellipticity of 
the orbit. The asymmetry of the bearing improves the 
stability of the system. 
 

Table 4: Comparison of threshold speed 

Damped rotor system Threshold speed of instability 
(rpm) 

  
With Isotropic bearing 

stiffness 
3257 

With Isotropic bearing 
stiffness along with 

damping 

6739 

With anisotropic bearing 
stiffness 

6820 

 
 
 

4.3 Effect of unbalance in the vibration of damped 
rotor systems 
Transient analysis is carried out to study the effect of 
unbalance in the vibration a damped rotor system. Model 
used for the analysis is same as that used for damped 
stability evaluation. An unbalance force is generated by 
adding a small unbalance mass of about 2gm into the 
system. The unbalance force is provided to the system in 
3 conditions. The unbalance response is plotted by the use 
of vibrational analysis, by varying the rotational speed of 
the rotor from 0 to 7000rpm with in 4sec. 
4.3.1 Unbalance force due to an added unbalance in 
any one of the rotor disk 
The analysis is carried out by adding an unbalance in any 
one of the two rotor discs. Because of this unbalance 
force system excited in both its first and second mode of 
vibration as shown in Fig.10. At zero rpm there is no 
force from unbalance excitation, so the unbalance 
response curve starts out with no response and the 
amplitude of vibration grows slowly during the running 
process. The system vibrates with maximum amplitude 
and heavy noise, when reaching its critical speeds. The 
unbalance response amplitude gradually reduces to a 
constant value above the critical speed.it is because below 
the critical speed, the unbalance acts to pull the disk out 
into an orbit that grows increasingly large with the speed. 
Once the disk achieves this state, further increase in 
speed does not change the amplitude until the effect 
of the next mode are observed.  

 
Fig.10: Unbalance response curve due to a single 

unbalance force 
 
4.3.2 Unbalance force due to symmetrical unbalances  
The analysis is carried out by adding symmetrical 
unbalances at both rotor discs of the damped two 
rotor discs. Fig.11 shows the unbalance response of a 
flexible two rotor system with the addition of two 
symmetrical unbalance in the system. From this 
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figure it is clear that the system vibrates only in first 
mode and there is no excitation in the second mode of 
vibration,. When symmetrical unbalance forces are 
there in the same direction, which will suppress the 
second mode of vibration and the system continue to 
vibrate only in its first mode. So the excitation of the 
system, only occurs on reaching the first critical 
speed of the system, but the amplitude of vibration is 
very high in this condition, followed by large number 
of vibrations in the first critical speed range  
 

 
           Fig.11: Unbalance response curve due to   

symmetrical unbalance force 
 
4.3.3 Unbalance force due to symmetrical and opposite 
unbalances 
The analysis is carried out by adding symmetrical and 
opposite unbalances at both rotor discs of the damped 
two rotor discs. Fig.12 shows the unbalance response 
of a flexible two rotor system with the addition two 
symmetrical and opposite unbalance in the system, 
causes the system to vibrate only in second mode 
there is no vibration in the first critical speed of the 
system. It is because symmetrical and opposite 
unbalance force on the system always tries to vibrate 
the system in its second mode and reduces the first 
mode of vibration. So the system excite only in its 
second critical speed range. So the large amplitude 
vibrations only occur in a higher speed range so the 
system can be safely operated in its first critical speed 
without any vibration and noise. 
 

 
Fig.12: Unbalance response curve due to symmetrical 

and opposite unbalance 
 
We can reduce the amplitude and vibration and stress 
generated on each element caused by unbalance with the 
aid of suitable external damping. 
 

V. CONCLUSION 
Gyroscopic effect has a greater influence in the critical 
speed of the system. Gyroscopic effect is more prominent, 
when the discs are positioned at the end of the shaft, 
which cause an increase of 58% in its critical speed. 63% 
of reduction in critical speed of two rotor system is 
obtained when the positions of discs are changed from the 
end of the shaft, towards the center of the shaft. The rotor 
will be more stable if the discs are placed towards the 
ends of the shaft and will be less stable if the discs are 
placed more towards the center of the shaft. The influence 
of internal damping makes the system unstable above its 
critical speed. The threshold speed of the system can be 
improved by using external damping and anisotropic 
bearing. When a system is rotating due to unbalance mass 
unnecessary vibration occurs, further it may generate 
excessive stress in machine elements. The mode of 
vibration and stress generated in the elements depends on 
the position of unbalance and the amplitude of vibration 
is become more severe, when the unbalance is higher.  
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