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Abstract— Dynamic stability of a damped flexible Rotor
system is studied in this work. Analysis of a damped
rotating shaft with multiple discs are carried out by,
varying the rotor offset positions in order to investigate
the effect on critical speed and frequency of the system.
From this analysis, it is observed that by varying the
rotor offset positions, the modal mass participation varies
and which in turn cause a variation in the critical speed
and frequency of the system. This study also extends a
detailed evaluation of damped rotor stability. Through
this analysis it is observed that the system become
unstable beyond its critical speed. The stabilizing effects
of anisotropic bearing stiffness and external damping are
also demonstrated. The effect of unbalance in the rotating
machinery is evaluated in the last section.

Keywords— Analysis, Bearing, Critical speed, Internal
damping, Rotor, Unbalance.

l. INTRODUCTION
The predictive maintenance concepts with vibration
measurements have a greater application in rotor
dynamics [1]. The future possibility of vibratiorased
condition monitoring of rotating machines are dimat
by Jyoti K.Sinha et.al. [2]. A.W.Lees et.al [3] keeto
give an overview of the recent developments inatibn-
based condition monitoring which has considerable
practical importance. Vibration based condition
monitoring has become well accepted and widely tsed
identify faults in rotating machines. A finite elent
dynamic modal for rotor bearing system, which actsu
gyroscopic moments and anisotropic bearings are
developed using a modal truncation method by Y.A.
Khulief et.al [4]. D.Combescure et.al [5] preserds
refined finite element modeling used for dynamialgsis
of large rotating machines. The stability domainaof
internally damped flexible spinning shaft, whichdisven
by a non-ideal source, is studied by S.S. Dasgaptd
[6]. J.K. Sinha et.al [7] proposes a method thah ca
reliably estimate both the rotor unbalance and
misalignment from a single machine run-down. An
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alternative balancing methodology for rotating niaehy

is presented by T.S. Morais et.al [8]. Chun-biam @tal
[9] extended the nonparametric modeling techniguidné¢
uncertain Jeffcott rotor with disc offset, and tlamdom
matrix model is established. The parametric intitglof
flexible rotor-bearing system under time-periodiasé
angular motions is analyzed by Qinkai Han et.a].[10
Rotor dynamic instability, a self-excitation of thetor-
bearing system, can occur without prior warning had
catastrophic potential. Instabilities pose a sexiou
challenge to the designer, since there are margrelift
mechanisms to be dealt with. Therefore, it is nemgsto
analyze the dynamic characteristics of the rotstesy to
guarantee the rotating machinery is running safeéiyite
element simulation of rotor-systems can be improlgd
modeling internal damping effects. This provides an
added dimension in studying turbo machinery stabili
and can assist the engineer in proper selectidreafing
characteristics to insure safe high-speed operation

Il. FINITE ELEMENT MODELING OF
FLEXIBLE ROTOR-BEARING SYSTEM

A rotating structure generally consists of rotatjpayts,
stationary parts, and bearings linking the rotapagts to
the stationary parts and/or the ground. The moolesists
of two rigid discs mounted on a uniform flexible ssa
less shaft supported by two identical flexible lregs at
each side. The damping of the shaft and bearings ar
taken into account. The shaft is modeled with Sesocahd
8 elements equal spaced every 0.05 meters along the
shaft. The disks were modeled on two nodes of fiadt s
and the moments of inertia and masses were cadculat
for each disk and input as real constants for edaiment.
The bearings are modeled at the beginning and &titeo
shaft. The stiffness and damping constants in aherdl
directions are input as real constants. The effafct
internal viscous damping is also incorporated ittie
finite element model.
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Fig. 1: Flexible two rotor system

2.1. The disk

The disk is modeled with Mass 21 element and isddf

by a single node. The degrees of freedom can lemnéet

up to six directions: translation in the x, y andiections
and rotation about the x, y and z axes. The ratagitia
effects can be included or excluded and elementbean
reduced to a 2D capability. If the element has anig
mass input, it is assumed that mass acts in alidouate
directions. In this paper, two disks are identigath
m=2.4Kg, k=0.006 Kgn, 1,=0.012 Kgn.

2.2. The flexible shaft

The shaft is modeled with the element Beam 188,tig0
noded beam element in 3D with tension, compression,
torsion and bending capabilities and is developaset
upon Timoshenko beam theory. The element has six
degree of freedom at each node, translation imdig&l x,

y and z directions and rotation about the nodal and z
axes. This beam element consists of different @ecti
shapes so that it can be modeled with desired osecti
shapes and there by real constants for the chestiorss
are automatically included.

2.3. Bearing support

The bearings are flexible in nature and are fixedhie
base. Bearing supports are modeled using Combinl4
element, has longitudinal or torsional capabilitydne,
two, or three dimensional applications. The longjital
spring-damper option is a uniaxial tension-compogss
element with up to three degrees of freedom at eade:
translations in the nodal x, y, and z direction N
bending or torsion is considered. The torsionaingpr
damper option is a purely rotational element whieé
degrees of freedom at each node: rotations abaut th
nodal x, y, and z axes.

[l VALIDATION
In order to verify the validity of the analysis @d
presented in this paper, we will compare our amalys
results based on our analysis code with the regultise
Ref.[10]. The results of the whirling frequencieghout
base movements from the reference journal
reproduced by using the analysis code

are

Backward

Whirling frequencies (rad's)

1801

160

0 =250 radls
A

7
s

140

. L L . . . L . .
0 50 100 150 200 250 300 350 400 450 500
Rotating speed 0_(rad/s)

Fig. 2: Whirling frequencies of the system without
base movements from the reference journal
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Fig. 3: Whirling frequencies of the system without
base movements obtained in this work

Table 1: Whirling speed

Forward Whirling Backward Forward Backward
Speed Whirling Whirling Whirling
(rad/sec) Speed Frequency (Hz) Frequency (Hz)
(rad/sec)
Values from the Reference Journal 240.5 187 38.27 9.7&2
Values obtained by using Analysis 240.3 187 38.25 29.76

code
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V. COMPUTATIONS AND DISCUSSIONS
4.1. Analysis of Flexible rotor System with differat
Rotor offset Positions
Calculation and analysis of critical speed is ofehe
important tasks of rotor dynamics, which helps toase
the balance velocity of the rotor systems. In g@stion
the analysis of the critical speed of the flexilot#or
system with multiple discs are carried out. Thelysis is
carried out by placing the rotor discs at variousles.
analysis taking the gyroscopic effect due Here the
analysis is carried out by placing the rotor disks
symmetrical positions, that is, the analysis igiedrout
by placing the rotors at the nodes 2&8, at the @£,
at the nodes 4&5 to study the effect of rotor posg on
the critical speed and hence the stability of tygem. In
this analysis Campbell diagrams and unbalance nsgpo
diagrams are used to analyze the critical speed.
The speed of the disc rotating around its own
geometrical center is called the rotational speiethe
rotor, which is a given value during the running
process. The rotating speed of disc around theecent
of the shaft is called the whirl speed of the rofbine
line, when the rotational speed and whirl speedthef
rotor become equal is the 1X line represented m th
Campbell diagram. Fig 4 to Fig 6 shows the Campbell
and unbalance response diagram for the rotors at
different rotor offset positions. The intersectipaint
of 1X line and the curves in the Campbell diagram
corresponds to the critical speed of the SysteronFr
the Campbell diagram it is clear that the net effafc
the gyroscopic factor would increase the whirl gpee
in forward direction and decrease the whirl speed i
the backward direction as shown in Table 2.
Results from the Campbell diagram and unbalance
response curve shows that forward whirl speed is
critical but the backward whirl speed is not. Tlés
because at backward whirl speed the steady state
unbalance response curve shows no peak and no
phase shift. This can be illustrated from the Fi¢gpo4
Fig 6. The reason for this behavior is the axial
symmetry of this two disk rotor system. It is besau
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that the backward mode vector is orthogonal to the
unbalance force vector and as a result energy d¢anno
be fed into the backward whirl. When the rotor & n
axially symmetric both forward and backward whirl
speed become critical speeds. The results shows tha
the critical speed of the system increases with the
increase in the degree of rotor offset positionke T
critical speed of the flexible rotor system varieghe
range of 1206rpm to 3257rpm, when the positions of
the rotor discs are changed from the center of the
shaft towards the end of the shaft. The effect of
gyroscopic factor on the rotor positions and hetime
critical speed of the system is also investigateal

the results shows that the position of rotor discs
within the system have a greater influence in the
action of gyroscopic force on the system. When the
rotor discs are placed at the center of the sledféct

of gyroscopic force on the critical speed is veegq,

a change of 1.08 % only. Whereas, when the rotor
discs are positioned at the end of the shaft, fhece

of gyroscopic force become very critical, a chamge
57.87% on critical speed is obtained. In the cafsa o
flexible two rotor system the effect of gyroscopic
force on the critical speed of the system becomeemo
prominent when the rotor discs are positioned at th
end positions of the shaft, rather than at the eent
position.

4.2. Effect of Internal damping in the stability of
flexible two rotor system

This analysis extends to a detailed evaluation of
damped rotor stability of a flexible two rotor sgst.

In order to perform the analysis, consider a damped
flexible two rotor system from the previous anasysi
with maximum critical speed. Here the effect of
internal viscous damping is incorporated into the
finite element model to evaluate the damped rotor
stability. The internal damping is given to the tgys

as a material property. In this work we are promngi

a material damping co efficient of 0.0002/s.
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Fig.4: Campbell and Unbalance response diagram when rotors are placed on node 2 and 8
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Fig.5: Campbell and Unbalance response diagram when rotors are placed on node 3 and 7
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Fig.6: Campbell and Unbalance response diagram when rotors are placed on node 4 and 5
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Table 2: Results from Campbell diagram and unbalance

response curve
Rotor 1 Forward  1° Backward Unbalance
Position  Critical Speed Critical response
(rpm) Speed (rpm) peak
(rpm)
2,8 3257 1540 3264
3,7 1688 1349 1680
4,5 1206 1179 1200

Table 3: Effect of gyroscopic factor on critical speed

Rotor First 1° Critical Percen
Position Mode Critical Speed tage
frequency  Speed without  chang
(Hz) (rpm) gyroscopi e
c effect (%)
(rpm)

2,8 34.386 3257 2063 57.87
3,7 25.049 1688 1502 12.38
4,5 19.986 1206 1193 01.08

Internal damping is due primarily to friction attoo
component interfaces. When the power inserted by
the internal damping exceeds the power extracted by
the external damping, that is, support bearing
damping and external damping, the rotor will become
unstable.

CAVPBELL DI AGRAM
FWunstabl e
BWstabl e
FWunst abl e
BWst abl e

|

Stability Value

1470 2940 4410 5880 7350
735 2205 3675 5145 6615

Spin velocity of SHAFT (rpm

Fig.7: Campbell diagram of damped rotor system
with isotropic bearing
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Results from the Campbell diagram, in Fig.7 veho
that the characteristic instability of first modé the
system occurs at a speed of 3257rpm, which isitee f
critical speed of the system. The first mode remain
unstable for higher spin speeds, along with theorsgc
forward mode becoming unstable at second criticeéd,
that is, at 5811rpm. In order to improve the thoddh
speed of instability and to make the system stabler
higher rotational speeds, two methods are employed.
Addition of isotropic bearing damping into the st
stabilize the first and second mode of vibrationtlie
system.

An isotropic bearing damping of,C= C,, = 1x1G Ns/m

is added to evaluate the effect of external dampintpe
threshold speed of instability. From the Campbell
diagram as shown in Fig.8 it is clear that the shodd
speed of instability of the rotor system is greatly
improved. The addition of external damping makes th
first mode of the system stable to 7973rpm. Thdesys
becomes unstable at 6739rpm, where the second mode
becomes unstable. By improving the external dampieg

can improve the threshold speed of instability.

CAMPBELL DI AGRAM
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Fig.8: Campbell diagram of damped rotor with external
damping

Removal of isotropic bearing stiffness and the toldiof
anisotropic bearing stiffness, can improve the iktatof
the system to a great extent. An anisotropic bgarin
stiffness of K,=1x16 N/m and K, =0.8x10G N/m is
added into the system to evaluate the effect afadropic
bearing stiffness in the threshold speed of inbtabi
From the Fig.9, values from the Campbell diagramnash
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that anisotropic bearing stiffness improves theghold
speed of instability of the system. The systentable up

to 6820rpm, where the second mode of the system
becomes unstable. The first mode is stable over
10000rpm.

CAVPBELL DI AGRAM
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FW unst abl e
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4704 6272

5488 7056
(rpm
Fig.9: Campbell diagram of damped rotor systemwith
anisotropic bearing

The benefit of using anisotropic bearing is obtdias a
result of elliptical orbit formed by asymmetric lieg
stiffness. The cross coupled force puts maximumuarno
of work into the system when the orbit is circledahis
work reduces when the orbit become more and more
elliptical, when the orbit is become more asymneethis

the whirl orbit become more and more ellipticak thork
input from the cross coupled force decreases taward
zero, whereas the work taken away by the dampireg do
not. Stability is achieved by increasing the eidijy of

the orbit. The asymmetry of the bearing improves th
stability of the system.

Table 4: Comparison of threshold speed

Damped rotor system Threshold speed of instability

(rpm)

With Isotropic bearing 3257
stiffness

With Isotropic bearing 6739

stiffness along with

damping

With anisotropic bearing 6820
stiffness
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4.3 Effect of unbalance in the vibration of damped
rotor systems
Transient analysis is carried out to study the ogffef
unbalance in the vibration a damped rotor systewdel
used for the analysis is same as that used for edmp
stability evaluation. An unbalance force is gersdaby
adding a small unbalance mass of about 2gm into the
system. The unbalance force is provided to theeaysh
3 conditions. The unbalance response is plottetthdyise
of vibrational analysis, by varying the rotatiosgleed of
the rotor from 0 to 7000rpm with in 4sec.
4.3.1 Unbalance force due to an added unbalance in
any one of the rotor disk
The analysis is carried out by adding an unbalameay
one of the two rotor discs. Because of this unkmadan
force system excited in both its first and secoratienof
vibration as shown in Fig.10. At zero rpm therents
force from unbalance excitation, so the unbalance
response curve starts out with no response and the
amplitude of vibration grows slowly during the rumg
process. The system vibrates with maximum amplitude
and heavy noise, when reaching its critical speéts.
unbalance response amplitude gradually reduces to a
constant value above the critical speed.it is beesdelow
the critical speed, the unbalance acts to pulldisk out
into an orbit that grows increasingly large witle ttpeed.
Once the disk achieves this state, further incréase
speed does not change the amplitude until the effec
of the next mode are observed.
(x10%*-3)

1

.9

.8

.7

Di spl acenent (m

0 .8 1.6 2.4 3.2 4
.4 1.2 2 2.8 3.6

Time (Sec)
Fig.10: Unbalance response curve due to a single
unbalance force

4.3.2 Unbalance force due to symmetrical unbalances
The analysis is carried out by adding symmetrical
unbalances at both rotor discs of the damped two
rotor discs. Fig.1kshows the unbalance response of a
flexible two rotor system with the addition of two
symmetrical unbalance in the system. From this
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figure it is clear that the system vibrates onlyfiirst
mode and there is no excitation in the second nafde
vibration,. When symmetrical unbalance forces are
there in the same direction, which will supprese th
second mode of vibration and the system continue to
vibrate only in its first mode. So the excitatiohtbe
system, only occurs on reaching the first critical
speed of the system, but the amplitude of vibrai®n
very high in this condition, followed by large nuat

of vibrations in the first critical speed range

(x10%*-3)
2

1.8

1.6

(m

1.4

1.2

Di spl acement

Tine (Sec)

Fig.11: Unbalance response curve due to
symmetrical unbalance force

4.3.3 Unbalance force due to symmetrical and oppadsi
unbalances

The analysis is carried out by adding symmetricad a
opposite unbalances at both rotor discs of the aaimp
two rotor discs. Fig.12 shows the unbalance respons
of a flexible two rotor system with the additiondw
symmetrical and opposite unbalance in the system,
causes the system to vibrate only in second mode
there is no vibration in the first critical speetithe
system. It is because symmetrical and opposite
unbalance force on the system always tries to wbra
the system in its second mode and reduces the first
mode of vibration. So the system excite only in its
second critical speed range. So the large amplitude
vibrations only occur in a higher speed range s th
system can be safely operated in its first critsaded
without any vibration and noise.

WWwWw.ijaems.com

D spl acenment (m
[

Time (Sec)

Fig.12: Unbalance response curve due to symmetrical
and opposite unbalance

We can reduce the amplitude and vibration and stres
generated on each element caused by unbalanceheith
aid of suitable external damping.

V. CONCLUSION
Gyroscopic effect has a greater influence in thecaf
speed of the system. Gyroscopic effect is more prent,
when the discs are positioned at the end of thdt,sha
which cause an increase of 58% in its critical dp&3%
of reduction in critical speed of two rotor systdm
obtained when the positions of discs are changed the
end of the shaft, towards the center of the shdf. rotor
will be more stable if the discs are placed towattts
ends of the shaft and will be less stable if thecgliare
placed more towards the center of the shaft. THeence
of internal damping makes the system unstable alisve
critical speed. The threshold speed of the systambe
improved by using external damping and anisotropic
bearing. When a system is rotating due to unbalarass
unnecessary vibration occurs, further it may gerera
excessive stress in machine elements. The mode of
vibration and stress generated in the elementsndispen
the position of unbalance and the amplitude ofatibn
is become more severe, when the unbalance is higher
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