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Abstract— This paper deals with impulsive noise (IN) in multichannel (MC) Active Noise Control (ANC) 

Systems with Online Secondary Path Modelling (OSPM) employing adaptive algorithms for the first time. It 

compares performance of various existing techniques belonging to varied computational complexity range 

and proposes four new methods, namely: FxRLS-VSSLMS, VSSLMS-VSSLMS, FxLMAT-VSSLMS and NSS 

MFxLMAT-VSSLMS to deal with modest to very high impulsive noise (IN). Simulation results show that these 

proposed methods demonstrated improved performance in terms of fast convergence speed, lowest steady 

state error, robustness and stability under impulsive environment in addition to modelling accuracy for 

stationary as well as non-stationary environment besides reducing computational complexity many folds. 

Keywords— impulsive noise, multichannel, Online Secondary Path Modelling 

 

I. INTRODUCTION 

Periodic noise, typically the low frequency noise, is a 

serious issue in many noise handling applications, such as 

those in the industry, production plants, air conditioning 

units, within aerial vessels, ships, and other vehicles [1]. It 

also imperils human mental and physical health, particularly 

for the infants and the older ones [2, 3]. Active-noise-

control (ANC) is the most useful instrument for reducing 

this low frequency noise [4]. ANC system works on the 

superposition principle, which reduces the impact of 

undesired noise by causing destructive interference between 

the acoustic waves from the noise source and anti-noise 

signal generated by the noise controller [5]. It uses adaptive 

digital filters to track the noise source, acoustic atmosphere, 

and unknown acoustic paths [6]. 

An ANC system can be configured in feedforward 

(FF), feed backward or, combination of both, as hybrid 

design [6]. A single channel (SC) feedforward (FF) ANC 

system encompasses a reference and an error microphone, 

in addition to a loudspeaker known as secondary source, as 

depicted in Fig. 1. The reference and error microphones are 

used to pick-up undesired 𝑥𝑟(𝑛) and residual 𝑒(𝑛) noises, 

respectively. With the help of these two signals, an anti-

noise signal 𝑦(𝑛) with the same amplitude as of undesired 

noise signal but opposite in phase is generated by the noise 

control adaptive filter called control filter represented by 

𝑊(𝑛)) and released through secondary source 

(loudspeaker). The cancelling signal 𝑦(𝑛) propagates 

through secondary path 𝑆(𝑛) to the error microphone where 

residual error 𝑒(𝑛) is calculated which is iteratively used to 

update control filter’s 𝑊(𝑛) coefficients [7].  
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Fig. 1: Single-channel (SC) feedforward (FF) ANC system 

 

In an ANC system, coefficients of control filters 

are updated recursively on each iteration using adaptive 

algorithm [4, 5]. Least Mean Square (LMS) algorithm and 

its different variants have proven most effective adaptive 

algorithms in ANC systems due to its simplicity and 

performance [8]. Filtered-x-Least Mean Square (FxLMS)  is 

a renowned, simplest and commonly used adaptation 

algorithm for ANC systems [8, 9]. The input reference 

signal 𝑥𝑟(𝑛) in the FXLMS algorithm is passed through a 

prototype of the perceived secondary acoustic path �̂�(𝑛), 

succeeding adaptive noise controller 𝑊(𝑛), and therefore 

termed as “filtered x algorithm”. Although, FxLMS 

algorithm is moderately resilient to inaccuracies between 

secondary path 𝑆(𝑧) and modeling filter �̂�(𝑧);however, the 

noise reduction capabilities are lower than to what are under 

ideal environment [9]. Thus, to cater for varying nature of 

secondary path and its effect on the overall performance of 

an ANC system, online identification or modeling of 

secondary path is essential to preserve stability, and 

robustness and to keep noise reduction performance at 

optimum level [10]. 

Eriksson and Allie [11] proposed a method to 

approximate the secondary path coefficients by infusing an 

internally generated auxiliary random white noise 𝑣𝑤(𝑛) 

into the system as shown in Fig. 2. Modeled secondary path 

�̂�(𝑧) is estimated by measuring response of original 

secondary path 𝑆(𝑧) to this auxiliary white noise 𝑣𝑤(𝑛). 

Fig. 2 shows the use of an extra online secondary path 

modelling (OSPM) adaptive filter �̂�(𝑧), based on LMS 

algorithm, in addition to the FxLMS algorithm-based 

control filter 𝑊(𝑧). The reference noise signal 𝑥𝑟(𝑛) 

propagates through primary path 𝑃(𝑧), (between input noise 

source and error microphone) while cancelling signal 

propagates through secondary path 𝑆(𝑧), (from secondary 

source (loudspeaker) towards error microphone) where 

residual error 𝑒(𝑛) is calculated to update control filter 

𝑊(𝑧). A glaring issue that Eriksson’s method faces is that 

auxiliary random white noise 𝑣𝑤(𝑛) turns up in the residual 

error signal 𝑒(𝑛) which interferes with convergence of 

control filter 𝑊(𝑧). Similarly, the residual error 𝑒(𝑛) itself 

causes hindrance to the modelling process and convergence 

of OSPM filter. Various researchers proposed different 

methods for improvement in Eriksson’s technique. For 

example, Akhtar et al. proposed improvement in Eriksson’s 

method by using a simple VSSLMS algorithm for 

modelling process [12]. Ahmed et al. [13] proposed 

betterment through two stage Auxiliary Noise Power 

scheduling (ANPS) to calculate time varying gain 𝐺(𝑛).. 

Yang et al. [14] innovated use of self-tuning power 

scheduling for determining the gain 𝐺(𝑛) based on the 

variations of the modeling error 𝑔 (𝑛) whereas three 

adaptive filters are used to tune the step size µ𝑠 of OSPM 

filter. Additionally, to speed up the process of reducing 

disturbances in the modelling process, an additional 

reference signal cancelling filter 𝐻(𝑧) was also utilized in 

[14]. 

 

Fig. 2: Online Secondary Path Modeling (OSPM) by Eriksson 
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A single-channel ANC system (as shown in Fig. 1 

& Fig. 2) is an effective tool to manage low frequency noise 

in a narrow duct. However, in more practical scenarios, as 

the noise field grows in an extended channel or in any large 

enclosure, the process of noise control or cancellation 

becomes further intricate than in a simple narrow channel. 

Therefore, in order to manage such comprehensive and 

complicated noise scenarios, it becomes imperative to 

deploy a multichannel ANC (MCANC) system made up of 

several secondary sources, numerous error sensors, and 

different reference mics [15]. In Fig. 3, a (𝐼 × 𝐽 × 𝐾) 

MCANC structure with I number of reference noise inputs 

𝑥𝑟𝑖
(𝑛), 𝑓𝑜𝑟 𝑖 = 1, 2, 3, . . . . . , 𝐼, J number of secondary 

loudspeakers, and K number of error microphones 𝑒𝑘(𝑛),

𝑓𝑜𝑟 𝑘 = 1, 2, 3, . . . . . , 𝐾, is shown. In such a construction of 

MCANC system, a total of 𝐽 × 𝐾 time varying secondary 

paths 𝑆𝑘𝑗(𝑛) are required to be modelled through OSPM 

process which is comparatively a more cumbersome job 

than for a single channel ANC system. This increase in 

complexity is mainly due to generation of complicated error 

signal 𝑒𝑘(𝑛) from each of 𝑘 error microphones which is a 

combination of signals arriving from different primary 

𝑃𝑘𝑖(𝑛) and secondary 𝑆𝑘𝑗(𝑛) paths. S.M. Kuo and D.R. 

Morgan concluded in [4] that different reference signals 

𝑥𝑟𝑖
(𝑛) may be averaged over to make single reference 

signal 𝑥𝑟(𝑛) which will have same effect as each of the 

individual reference signals combined but with reduced 

complexity. Thus, a general 1 × 𝐽 × 𝐾 MCANC system will 

be considered in this paper.  

 

Fig. 3: Structure of 𝐼 × 𝐽 × 𝐾 MC ANC system 

 

Most researchers, including [12, 13, 14, 16], 

primarily dealt with Gaussian noise, however, many 

practical applications in industry and construction like 

stamping and cutting machinery in the production set-ups, 

pile drivers and gasoline engines etc. require dealing with 

impulsive noise (IN)  [17, 18]. IN is often characterized by 

strong, abrupt mutations that change the signal's distribution 

into a non-Gaussian one [19]. A symmetric α-stable 

distribution can be used to model impulsive noise with the 

following characteristic function [17]: 

𝑓(𝑥) = 𝑒−𝛾|𝑥|𝛼
 (1)

Where 𝛼 in above equation is the characteristic exponent 

that determines form of a distribution and its value ranges 

from 0 < 𝛼 < 2. Tail will be heavier for 𝛼 closer to 0, 

depicting very high impulsive nature of the noise. On the 

other end, as 𝛼 approaches 2, the impulsive nature keeps on 

diminishing and distribution becomes more and more 

Gaussian. 𝛾, in (1) is the scaling parameter which if set to 1, 

makes the 𝑆𝛼𝑆 distribution a standard distribution. Same 

will be utilized in this paper i.e., 0 < 𝛼 < 2 and 𝛾 = 1. Fig. 

4 shows a standard 𝑆𝛼𝑆 distribution for different values of 

𝛼. 

 

Fig. 4: PDFs for standard SαS distribution of various α  

  

The traditional FxLMS algorithm, which minimizes error 

signal's variance, has shown to be quite effective at 

suppressing Gaussian noise [8]. However, due to non-

existence of second-order moment in impulsive noise, the 

FxLMS method degrades and diverges when dealing with 

IN [20]. Filtered-x least mean p-power (FxLMP) approach 

as described by Leahy [21] works on minimizing the lower 

order fractional moment of error, p (0<p<α), which occurs 

for stable distributions. In terms of active IN suppression, it 

is more resilient than the FxLMS algorithm. Its convergence 

speed, however, is very slow, particularly when noise 

becomes increasingly impulsive. Furthermore, it 

necessitates a difficult process of prior approximation of p 

based on α for adequate results. Sun [22] and Akhtar [23] 

proposed modifications in FxLMS by applying threshold in 

the algorithm. This threshold eliminate the aberrant values 

in reference noise and / or error signal/s, which may lead to 
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instability in the ANC system. Sun used Modified 

Reference FxLMS (MRFxLMS) algorithm [22] to discard 

any value of reference signal above a certain threshold while 

Akhtar presented Threshold based FxLMS (Th-FxLMS) 

algorithm [23] to clip samples of reference noise and / or 

error signal/s above threshold to provide stability in the 

system. Similarly, Zeb [24], in 2017, employed same 

threshold concept using Filtered-x Recursive Least Squares 

(FxRLS) algorithm and suggested Threshold based FxRLS 

(TFxRLS) algorithm for IN in ANC systems. The TFxRLS 

algorithm improved the convergence of the system greatly 

but conceded on increased computational complexity. Zeb 

[24] also proposed hybrid Modified Gain FxRLS-

Normalized Step Size FxLMS (MGFxRLS - NSSFxLMS) 

algorithm that shows faster convergence speed than 

NSSFxLMS with lesser complexity than FxRLS. 

Researchers, in [22, 23, 24], worked with offline modelling 

in their threshold-based algorithms as computation of 

optimal threshold was not possible in the case of  ANC 

systems with OSPM. Jabeen et al. [16] employed OSPM for 

IN in single channel ANC system using FxRLS with the 

help of an additional filter as in Yang’s method [14] and 

proposed three different variants namely, FxRLS-FxRLS, 

MGFxRLS-FxRLS and VSSFxNLMS-FxRLS. These 

variants improved modeling accuracy, provided faster 

convergence and robustness with varying computational 

complexities. Although, FxRLS and its variants [16, 24] 

improved performance, but its complexity is of order O(n2) 

as compared to the order O(n) complexity of the algorithms 

belonging to FxLMS family. 

 Another technique to deal with IN, but still keeping 

the complexity low, is to use high-order-error-power 

(HOEP) adaptive algorithms [25, 26, 27]. Filtered-x Least 

Mean Absolute Third (FxLMAT) algorithm is one such 

HOEP algorithm that  uses mean absolute third power of 

error signal 𝑒(𝑛) and outperforms FxLMS for majority of 

noise probability densities [26, 27, 28]. However, FxLMAT 

faces stability issues because of its dependence on various 

input characteristics i.e., weight initialization and variance 

etc. [28]. Xiong, in [29], formulated normalized LMAT 

(NLMAT) to cater for these instability issues which can 

subdue non-Gaussian noise better than other algorithms. 

Moroever, H. A. Khan et al. [30], employed FxLMAT to 

mitigate IN in single channel ANC System with OSPM. 

Khan proposed different variants, FxLMAT, MFxLMAT 

and VSSFxRNLMAT [30] to be used in control filter 𝑊(𝑛) 

while employing VSSLMS in modeling filter �̂�(𝑛)  in 

addition to a third filter 𝐻(𝑛) as in yang’s method [14]. 

Various researchers [22, 24, 20, 23] presented 

different methods to alleviate IN but almost all of them 

worked with offline modeling of secondary path which are 

not reliable solutions for time varying paths. Recently, 

Jabeen et al. [16] and Hashir et al. [30] worked on Single 

channel ANC system with OSPM for IN. However, there is 

still no published research that can control the IN actively 

and adaptively in a MC ANC systems along with the 

employment of OSPM technique. Considering this fact, we 

took motivation to undertake this challenging task and 

present out proposed methods for such a scenarios in this 

paper. 

 The layout of remaining paper is that Section-II 

briefly discuss Akhtar’s method for MCANC system with 

OSPM. Section-III presents new proposed techniques, 

followed by section-IV which comprises of complexity 

comparisons of various methods discussed in this paper. 

Section-V shows computer simulations to validate results of 

proposed methods, summed up by concluding note. 

 

II. BASIC MC ANC SYSTEM WITH OSPM 

Akhtar et al. [12] presented an efficient VSS-LMS 

algorithm based MC ANC system for Gaussian input using 

Eriksson’s [11] structure of OSPM to keep the complexity 

low (Fig. 5). This variable step size (VSS) strategy used 

power ratio 𝜌𝑘(𝑛) of error signals 𝑒𝑘(𝑛) and 𝑓𝑘(𝑛) to 

compute step size 𝜇𝑠𝑘
(𝑛) for OSPM filters as follows: 

𝜇𝑠𝑘
(𝑛) =  𝜌𝑘(𝑛)𝜇𝑠𝑚𝑖𝑛

+ (1 − 𝜌𝑘(𝑛))𝜇𝑠𝑚𝑎𝑥 
(2) 

Where 𝜇𝑠𝑚𝑖𝑛
 and 𝜇𝑠𝑚𝑎𝑥

 are lower and upper step size 

values, determined experimentally. Power ratio 𝜌𝑘(𝑛) is 

given by: 

𝜌𝑘(𝑛) =  
𝑃𝑓𝑘

(𝑛)

𝑃𝑒𝑘
(𝑛)

 (3) 

These powers 𝑃𝛾(𝑛) are estimated through low pass 

estimator (LPE), as: - 

𝑃𝛾(𝑛) = 𝜆𝑃𝛾(𝑛 − 1) + (1 − 𝜆)𝛾2(𝑛)    ;     𝛾 = 𝑓, 𝑒 (4) 

Whereas error signals are defined as: - 

𝑒𝑘 (𝑛) =  𝑑𝑘  (𝑛) − [𝑦′
𝑘1

(𝑛) + 𝑦′
𝑘2

(𝑛)] − [𝑣′
𝑘1(𝑛) + 𝑣′

𝑘1(𝑛)]    ;    𝑑(𝑛) = 𝑝𝑘1 ∗ 𝑥𝑟(𝑛)(5) 

and   

𝑓𝑘 (𝑛)  =  𝑒𝑘  (𝑛) − [�̂�′
𝑘1(𝑛) + �̂�′

𝑘1(𝑛)] (6) 

Akhtar et al. initialized OSPM filters by offline modeling 

which was stopped when error was lowered to -5 dB. 

Afterwards, OSPM filters are updated using following: - 

�̂�𝑘𝑗  (𝑛 + 1) =  �̂�𝑘𝑗  (𝑛) +  𝜇𝑠𝑘
(𝑛)[𝑓𝑘(𝑛)  𝑣𝑗(𝑛)] (7) 

After convergence of OSPM filters, Control filters in 

Akhtar’s method are updated by MeFxLMS algorithm as: - 

𝑤𝑗  (𝑛 + 1) =  𝑤𝑗  (𝑛) +  𝜇𝑤𝑗
 [𝑓1(𝑛) �̂�′𝑗1(𝑛)  + 𝑓2(𝑛) �̂�′𝑗2(𝑛)](8)
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Fig. 5: Akhtar’s method for OSPM in MC 1x2x2 ANC System 

 

III. PROPOSED METHODS 

A. Proposed Method – 1: FxRLS & VSSLMS. 

FxRLS algorithm has been proven favorable in dealing with 

impulsive noise in single channel ANC system [16, 24]. In 

this method (Fig. 6), FxRLS has been employed in control 

filters of MC ANC system while modelling filters are 

adapted through VSSLMS algorithm as follows: - 

�̂�𝑘𝑗  (𝑛 + 1) =  �̂�𝑘𝑗  (𝑛) +  𝜇𝑠𝑘
(𝑛) [𝑓𝑘(𝑛)  𝑣𝑗(𝑛)] (9) 

where 𝑓𝑘(𝑛) is modelling error signal, defined as: - 

𝑓𝑘(𝑛) =   𝑒𝑘  (𝑛) − [�̂�′
𝑘1(𝑛) + �̂�′

𝑘1(𝑛)] (10) 

and  

𝑒𝑘 (𝑛) =  𝑑𝑘  (𝑛) − [𝑦′
𝑘1

(𝑛) + 𝑦′
𝑘2

(𝑛)] − [𝑣′
𝑘1(𝑛) + 𝑣′

𝑘1(𝑛)] (11) 

𝑑𝑘(𝑛) = 𝑝𝑘1 ∗ 𝑥𝑟(𝑛) 

while step size 𝜇𝑠𝑘
is calculated through: - 

𝜇𝑠𝑘
(𝑛) =  𝜌𝑘(𝑛)𝜇𝑠𝑚𝑖𝑛

+ (1 − 𝜌𝑘(𝑛))𝜇𝑠𝑚𝑎𝑥 
(12) 

𝜇𝑠𝑚𝑖𝑛
 and 𝜇𝑠𝑚𝑎𝑥

 are lower and upper step size values 

determined experimentally and 𝜌𝑘(𝑛) is power ratio of 

modelling and residual errors, given as: - 

𝜌𝑘(𝑛) =  
𝑃𝑓𝑘

(𝑛)

𝑃𝑒𝑘
(𝑛)

  (13) 

where 𝑃𝑓𝑘
(𝑛) and 𝑃𝑒𝑘

(𝑛) are powers of 𝑓𝑘(𝑛) and 𝑒𝑘(𝑛) 

error signals which are estimated employing low pass 

estimator of the form: 

𝑃𝛾𝑘
(𝑛) = 𝜆𝑃𝛾𝑘

(𝑛 − 1) + (1 − 𝜆)𝛾𝑘
2(𝑛)  ;    𝛾 = 𝑓, 𝑒 (14) 

After convergence of OSPM filters, FxRLS algorithm is 

used to update ANC filters as following: - 

𝑤𝑗  (𝑛 + 1) =  𝑤𝑗  (𝑛) +  𝑓1(𝑛) 𝐾𝑤𝑗1
(𝑛) + 𝑓2(𝑛) 𝐾𝑤𝑗2

(𝑛)(15) 

where  

𝐾𝑤𝑘𝑗
(𝑛) =  

𝑃𝑤𝑘𝑗
�̂�′𝑘𝑗(𝑛)

�̂�′𝑇
𝑘𝑗(𝑛)  𝑃𝑤𝑘𝑗  

�̂�′𝑘𝑗(𝑛) + 𝜆
  ;   (16) 

𝑃𝑤𝑘𝑗
 is initialized as 𝑃𝑤𝑘𝑗

(0) = 𝛿−1𝐼 and 𝛿 is regularization 

parameter having experimentally determined value. 
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Fig. 6: Proposed method – 1, FxRLS & VSSLMS  

 

B. Proposed Method – 2: VSSLMS & VSSLMS. 

Proposed method - 1, FxRLS & VSSLMS, produced good 

results but at the cost of high computational complexity. 

Consequently, there was a dire need to find a less complex 

solution to handle impulsive noise. In this method, a less 

complex algorithm, VSSLMS, is used in both modeling and 

control filters that yet shows performance comparable to 

that of FxRLS variant discussed above. Modeling process is 

same as given in Proposed method 1 (equations 9-14). Thus, 

following equations are used to update OSPM filters: - 

�̂�𝑘𝑗  (𝑛 + 1) =  �̂�𝑘𝑗  (𝑛) +  𝜇𝑠𝑘
(𝑛) [𝑓𝑘(𝑛)  𝑣𝑗(𝑛)] (17) 

Whereas control filter is updated using: - 

𝑤𝑗  (𝑛 + 1) =  𝑤𝑗  (𝑛) +  𝜇𝑤𝑗
(𝑛) [𝑓1(𝑛) �̂�′𝑗1(𝑛)  +  𝑓2(𝑛) �̂�′𝑗2(𝑛)](18) 

Step size 𝜇𝑤𝑗
(𝑛) to be computed as under: - 

𝜇𝑤𝑘
(𝑛) =  𝜌𝑘(𝑛)𝜇𝑤𝑚𝑖𝑛

+ (1 − 𝜌𝑘(𝑛))𝜇𝑤𝑚𝑎𝑥 
(19) 

And 𝜌𝑘(𝑛) is calculated using (13) and (14) 
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Fig. 7: Proposed method – 2, VSSLMS & VSSLMS 

 

C. Proposed Method – 3: FxLMAT & VSSLMS. 

Proposed Method - 2 provided simplicity, but convergence 

speed was affected. To find fast convergence along with less 

complexity, a HOEP algorithm, FxLMAT in combination 

with VSSLMS (Fig. 8) is tried as under: 

Control filters will be adapted using: - 

𝑤𝑗(𝑛 + 1) =  𝑤𝑗(𝑛) + 𝜇𝑤(𝑛)[𝑓1
2(𝑛)𝑠𝑖𝑔𝑛(𝑓1(𝑛))�̂�𝑗1(𝑛) + 𝑓2

2(𝑛)𝑠𝑖𝑔𝑛(𝑓2(𝑛))�̂�𝑗2(𝑛)](20) 

where 𝜇𝑤(𝑛) is determined experimentally. 

Modelling filters are adapted through VSSLMS 

algorithm using equations 9-14 
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Fig. 8: Proposed method – 3, FxLMAT & VSSLMS 

 

D. Proposed Method – 4: NSS MFxLMAT & 

VSSLMS. Bona fide FxLMAT did not produced 

anticipated results. A modified version of FxLMAT is 

proposed here which has much less computational intricacy 

but shows performance comparable to that of FxRLS 

variant discussed above. 

Here, again, the modelling process is carried out using 

VSSLMS technique similar as given in Proposed method 1 

(equations 9-14). Therefore, details of only control filters 

will be discussed here. Below is the weight update equation 

for control filters: - 

𝑤𝑗(𝑛 + 1) =  𝑤𝑗(𝑛) + [
𝜇𝑤1

(𝑛)𝑓1
2(𝑛)𝑠𝑖𝑔𝑛(𝑓1(𝑛))�̂�𝑗1(𝑛) +

𝜇𝑤2
(𝑛)𝑓2

2(𝑛)𝑠𝑖𝑔𝑛(𝑓2(𝑛))�̂�𝑗2(𝑛)
] (21) 

Where step size parameter 𝜇𝑤𝑗
(𝑛) is calculated as: - 

𝜇𝑤𝑗
(𝑛) =  

𝜇𝑤

‖�̂�𝑗1(𝑛) + �̂�𝑗2(𝑛)‖
2  (22) 

𝜇𝑤 is experimentally determined by extensive simulations. 
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Fig. 9: Proposed method – 4, NSS MFxLMAT & VSSLMS 

 

IV. COMPUTATIONAL COMPLEXITIES 

Any algorithm's implementation in real-time applications significantly depends upon computational complexity. 

Table-1 shows summary of computational complexities for various existing and proposed methods discussed in this paper. 

Table-1. Computational Complexities 

Methods ×, ÷ , √ +, - Total 

Eriksson’s method 16M+8Lw+4 18M+6Lw-6 34M+14Lw-2 

Akhtar’s method 16M+8Lw+22 18M+6Lw+6 34M+14Lw+28 

Ahmed’s method 24M+14Lw+81 28M+14Lw+34 52M+28Lw+115 

Yang’s method 18M+8Lw+4K+40 20M+6Lw+4K+12 38M+14Lw+8K+52 

Jabeen’s method 
4Lw

2+4M2+24M+ 

14Lw+4K+34 

4Lw
2+4M2+18M+ 

6Lw+4K+12 

8Lw
2+8M2+42M+ 

20Lw+8K+46 

Proposed method – 1  4Lw
2+16M+14Lw+22 4Lw

2+18M+6Lw+6 8Lw
2+34M+20Lw+28 

Proposed method – 2 16M+8Lw+26 18M+6Lw+10 34M+14Lw+36 

Proposed method – 3 16M+8Lw+30 18M+6Lw+6 34M+14Lw+36 

Proposed method – 4 2L+16M+6Lw+36 4L+18M+6Lw+4 6L+34M+12Lw+40 

 

V. SIMULATIONS AND DISCUSSIONS 

 This section discusses results of extensive 

MATLAB simulations carried out to validate the superior 

performance of proposed methodologies by comparing 

them with existing methods as mentioned below:  

➢ Erikson's method [11] 

➢ Akhtar's method [12] 
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➢ Ahmed's method [13] 

➢ Yang's method [14] 

➢ Jabeen’s method [16] 

Mean Noise Reduction (MNRk) and Relative 

Modeling Error (∆𝑆𝑘𝑗) are two performance metrics used 

for comparison of all algorithms under investigation. The 

MNRk is defined as: - 

𝑀𝑁𝑅𝑘(𝑛) = 𝐸 {
𝐴𝑒𝑘

(𝑛)

𝐴𝑑𝑘
(𝑛)

} (23) 

where 𝐴𝑒𝑘
(𝑛) is measurement of absolute value of 

disturbance signal and 𝐴𝑑𝑘
(𝑛) is absolute value of residual 

error, both measured at kth error microphone, calculated as: 

- 

𝐴𝑒𝑘
(𝑛) =  𝜆𝐴𝑒𝑘

(𝑛 − 1) + (1 − 𝜆)|𝑒𝑘(𝑛)| (24) 

𝐴𝑑𝑘
(𝑛) =  𝜆𝐴𝑑𝑘

(𝑛 − 1) + (1 − 𝜆)|𝑑𝑘(𝑛)| (25) 

On the other hand, the value of ∆𝑆𝑘𝑗 is calculated as given 

in (26) 

∆𝑆𝑘𝑗(𝑛) = 20 log10

‖𝑠𝑘𝑗(𝑛) − �̂�𝑘𝑗(𝑛)‖

‖𝑠𝑘𝑗(𝑛)‖
(26) 

Using data from [4], original primary 𝑃𝑘𝑖(𝑛) and 

secondary 𝑆𝑘𝑗(𝑛) acoustic paths are taken as FIR filters. 

Values of various fixed parameters used for simulations in 

this paper are given in Table-2. Extensive simulations have 

been carried out to determine appropriate values for various 

controlling parameters to attain best results and these values 

are given in Table 3. Modeling filters �̂�𝑘𝑗(𝑛) in all proposed 

methods are adapted through VSSLMS algorithm which has 

stability issue at start when step size is smaller [31]. To 

avoid instability, modelling filters �̂�𝑘𝑗(𝑛) are initialized by 

offline modelling until the modeling error is dropped to -5 

dB instead of null vector [32]. Cases 1-3 of this section 

discuss performance of proposed algorithms under 

stationary environment with varying impulsive input 

(Error! Reference source not found.). Case – 4 presents 

performance for non-stationary environment: - 

➢ Case – 1: Moderate impulsive input (α=1.85) 

➢ Case – 2: High impulsive input (α=1.65) 

➢ Case – 3: Very high impulsive input (α=1.45) 

➢ Case – 4: Non-Stationary Environment 

 (I guess you have used subplotting command, don’t use it,  

also pics are still very unclear) if you want to plot more than 

one pic and preseny them simultaneously, plot them 

separately, insert in word, label a,c\b,c,d, etc and add 

captions for each of them at end 

 
Fig. 10: (a) Moderate impulsive input (α=1.85), (b) High impulsive input (α=1.65), 

(c) Very High impulsive input (α=1.65), (d) Blended impulsive input 

Table-2. Various simulations parameters 

MC ANC system with OSPM IN [𝒙𝒓 (𝒏)] 

Parameter Symbol Value Parameter Symbol Value 

Primary paths tap size L 48 Total samples N 100,000 

Secondary paths tap size M 16 Total realizations Avg 10 
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Control filters tap size Lw 32 Characteristic exponent α 1.85, 1.65, 1.45 

OSPM filters tap size M 16 Other parameters 

γ 1 

C 0 

δ 0 

 

Table 3. Controlling Parameters 

Methods Case – 1  Case – 2  Case – 3  Case – 4 

Eriksson’s method 

μw = 5e-7 

μs = 1e-4 

λ = .99 

- - - 

Akhtar’s method 

μw = 3e-7 

μs_min = 7.5e-5 

μs_max = 7.5e-4 

λ = .99 

- - - 

Ahmed’s method 

μ1 = 2.5e-3 

μ2 = 9.5e-3 

α = .997 

γmin = .3 

γmax = .9 

λ = .999 

- - - 

Yang’s method 

μw = 1e-7 

μh = 1e-4 

α = .005 

λ = .9999 

μw = 1e-7 

μh = 1e-4 

α = .0025 

λ = .9999 

μw = 1e-8 

μh = 1e-8 

α = .0015 

λ = .9999 

μw = 1e-8 

μh = 1e-8 

α = .0015 

λ = .9999 

Jabeen’s method 

δ1 = 1e5 

δ2 = 4.5e4 

μh = 1e-4 

λ = .99 

δ1 = 1e5 

δ2 = 6.5e4 

μh = 1e-4 

λ = .999 

δ1 = 1e6 

δ2 = 6.5e5 

μh = 1e-6 

λ = .99 

δ1 = 1e6 

δ2 = 6.5e5 

μh = 1e-6 

λ = .99 

Proposed method - 1 

δ = 5e4 

μs_min = 1e-4 

μs_max = 7e-3 

λ = .99 

δ = 5e4 

μs_min = 1e-4 

μs_max = 7e-3 

λ = .99 

δ = 5e5 

μs_min = 1e-4 

μs_max = 7e-3 

λ = .99 

δ = 5e5 

μs_min = 1e-4 

μs_max = 7e-3 

λ = .99 

Proposed method - 2 

μw_min = 1e-6 

μw_max = 1e-4 

μs_min = 7.5e-4 

μs_max = 7.5e-3 

λ = .99 

μw_min = 1e-6 

μw_max = 1e-4 

μs_min = 7.5e-4 

μs_max = 7.5e-3 

λ = .99 

μw_min = 1e-7 

μw_max = 1e-5 

μs_min = 7.5e-6 

μs_max = 7.5e-3 

λ = .99 

μw_min = 1e-7 

μw_max = 1e-5 

μs_min = 7.5e-6 

μs_max = 7.5e-3 

λ = .99 

Proposed method - 3 
μw = 1e-7 

μw_max = 7e-2 

μw = 1e-9 

μw_max = 7e-2 

μw = 5e-13 

μw_max = 7e-2 

μw = 5e-13 

μw_max = 7e-2 
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μs_min = 1e-4 

λ = .999 

μs_min = 1e-4 

λ = .999 

μs_min = 1e-6 

λ = .999 

μs_min = 1e-6 

λ = .999 

Proposed method - 4 

μw = 5e-3 

μs_min = 1e-4 

μs_max = 7e-3 

λ = .99 

μw = 5e-3 

μs_min = 1e-4 

μs_max = 7e-3 

λ = .99 

μw = 9.5e-4 

μs_min = 1e-4 

μs_max = 7.5e-3 

λ = .99 

μw = 9.5e-4 

μs_min = 1e-4 

μs_max = 7.5e-3 

λ = .99 

 

Case – 1 : Moderate Impulsive Input (α=1.85). To begin 

with simulation part, all reported algorithms [11, 12, 13, 14, 

16] are subjected to moderated impulsive noise (α=1.85) for 

MC ANC with OSPM. Fig. 11 shows comparison of relative 

modelling error ∆𝑆𝑘𝑗(𝑛) and mean noise reduction 

(𝑀𝑁𝑅𝑘(𝑛)) of various existing techniques. Fig. 11 (a) 

shows that Yang’s method exhibits fastest convergence at 

n=10,000 and achieving lowest value of ∆𝑆𝑘𝑗(𝑛) =

−25 𝑑𝐵 while MNR curve depicted in Fig. 11 (b) shows 

that Jabeen’s method achieved convergence at n=20,000 

with lowest steady state value (0.35 dB) among all the 

existing methods [11, 12, 13, 14, 16]. Since, Yang’s and 

Jabeen’s methods outperform other exiting methods hence, 

only these two methods are being employed in future 

simulations and compared with algorithms proposed in this 

paper. 

 

 

Fig. 11: Simulation Results - Existing Methods, Case-1. (a) ∆S (b) MNR 
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Although, Jabeen’s method [16] exhibited best 

performance in terms of noise reduction among existing 

techniques as shown in Fig. 11 (b), however, this 

exceptional performance was achieved at the cost of higher 

computational complexity due to use of FxRLS-FxRLS 

algorithm in both, control 𝑊𝑗(𝑛) as well as modelling 

�̂�𝑘𝑗(𝑛) filters. To overcome this additional computation 

load while achieving similar performance, we developed 

our first proposed method which is a combination of 

FxRLS-VSSLMS algorithms (Proposed method - 1). This 

proposed method has quite less computational complexity 

(Table-1) as compared to Jabeen’s method but in the noise 

reduction, it even surpasses Jabeen’s method in terms of 

convergence speed, robustness to impulsive input and lower 

steady state value (Fig. 12). MNR curve depicted in Fig. 12 

(b) shows that Proposed FxRLS-VSSLMS achieved 

convergence at n=8000 with steady state value of 0.27 dB. 

Good results of Proposed FxRLS-VSSLMS 

algorithms motivated us to further develop our second 

proposed algorithm, VSSLMS-VSSLMS (Proposed method 

- 2), which has even lesser complexity (Table-1) than our 

proposed method 1 and still achieves same steady state 

MNR values (0.27 dB) as in the case of Proposed method 1, 

however, with reduced convergence speed at n = 16,800 as 

shown in Fig. 12 (b). 

To combine the positive aspects (e.g. low steady 

state error and robustness) in both the proposed methods – 

1 and 2 and cater for their negative aspects (e.g. high 

computational complexity in Proposed FxRLS-VSSLMS 

and slow convergence in Proposed VSSLMS-VSSLMS), a 

third method is proposed. This third proposed method 

combines FxLMAT (as used by Khan et al. against IN [30]) 

with VSSLMS algorithms (Proposed method – 3). This 

method when implied in a MCANC system in the presence 

of IN, although achieved steady state value (0.35 dB)  as in 

Jabeen’s method, however, its convergence is very slowly, 

achieved at n=50,000. Moreover, Proposed FxLMAT-

VSSLMS does not show robustness to impulsive nature of 

input noise, (Fig. 12 (b)). Hence, lastly, a modified version 

of FxLMAT is presented in proposed method 4 as 

combination of NSS MFxLMAT-VSSLMS. Fig. 12 (b) 

shows that this proposed NSS MFxLMAT-VSSLMS 

demonstrates best results among all techniques with fastest 

convergence at n=4000 and same steady state value of 𝑀𝑁𝑅 

= 0.27 dB with least complexity (Table-1).  
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Fig. 12: Simulation Results, Case-1. (a) ∆S (b) MNR 

Case – 2: High Impulsive input (α=1.65). For high IN, 

similar results are obtained as in Case-1 of moderate IN. 

Simulation results shown in Fig. 13 (a) confirms that Yang’s 

method [14]  extended to MC again gives best result in 

reduction of relative modelling error ∆𝑆(𝑛) = -30 dB while 

proposed algorithms yet again give best MNR curve but 

with less computational complexity (Table-1). It is evident 

from Fig. 13 (b) that proposed methods – 1, 2 & 4 achieve 

lowest steady state MNR value of 0.24 dB. Proposed 

VSSLMS-VSSLMS exhibits slower convergence at n= 

13500, similar to its performance in case – 1. Proposed 

FxRLS-VSSLMS and Proposed NSS MFxLMAT-

VSSLMS show faster convergence at n= 8000 and n=4000, 

respectively.  

 

Case – 3: Very High Impulsive input (α=1.45). In this 

case, when the input noise becomes highly impulsive, 

Yang’s method [14] consistently performed best (Fig. 14 

(a)) for reduction of relative modelling error ∆𝑆(𝑛)= -30 

dB. On the other end, MNR performance of Proposed 

VSSLMS-VSSLMS has deteriorated for this excessive IN 

(Fig. 14 (b)). However, Proposed FxRLS-VSSLMS and 

Proposed NSS MFxLMAT yet again performed 

unswervingly best for MNR curve with fastest convergence 

at n=8000 and lowest steady state error of 0.22 dB and 0.28 

dB respectively. 
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Fig. 13: Simulation Results, Case-2. (a) ∆S (b) MNR 

 

 

 

Fig. 14: Simulation Results, Case-3. (a) ∆S (b) MNR 
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Case – 4: Non-Stationary Environment. In our final 

evaluation, proposed methods are subjected to non-

stationary environment to check for their robustness as 

follows:- 

a. In first instance, all secondary paths are perturbed 

at iteration n=50,000 and very high IN (α=1.45) of 

case 3 is used as input to assess behavior of 

proposed algorithms. 

b. In second trial, a blended impulsive input 

comprises of varying α is used as under Fig. 10 

(d):-  

𝛼 = {
1.65      ;                0 < 𝑛 < 35,000
1.45      ;     35,000 ≤ 𝑛 < 70,000
1.85      ;   70,000 ≤ 𝑛 ≤ 100,000

 

  

 Simulation results (Fig. 15 & Fig. 16) confirm 

robustness of proposed algorithms under non-stationary 

environment.Fig. 15 (a) shows that only Yang’s method, 

Proposed FxRLS-VSSLMS and NSS FxLMAT-VSSLMS 

converge after perturbation is encountered at n=50,000. 

Moreover, Yang’s method consistently manifested lowest 

relative modeling error by reaching to -30 dB. Similarly, 

Fig. 15 (b) shows that Proposed FxRLS-VSSLMS and NSS 

MFxLMAT-VSSLMS performed in same manner as in case 

– 3 (α=1.45). In this case, both the proposed algorithms have 

touched lowest steady state error of 0.20 dB and 0.22 dB 

respectively. It is important to note that after encountering 

perturbation at n=50,000, both algorithms took 8000 

iterations again to converge at n=58,000 as in the beginning 

(n=0 to n=8000).  

 

 

Fig. 15: Simulation Results, Case-4 (α = 1.45). (a) ∆S (b) MNR 
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Fig. 16: Simulation Results, Case-4 (blended input). (a) ∆S (b) MNR 

 

Fig. 16 shows response to blended IN. At 

beginning n=0, high impulsive input (α=1.65) is used. At 

n=35000, it is changed to very high IN (α=1.45) and at 

n=70000, to moderate IN (α=1.85). It is evident from 

simulation results depicted in Fig. 16 (a) that Yang’s 

method continue to perform best for relative modeling error. 

A slight change is observed in convergence pattern at swap 

over points in relative modeling error. Fig. 16 (b) illustrates 

MNR for blended IN. Proposed FxRLS-VSSLMS and NSS 

MFxLMAT-VSSLMS once again reached to lowest steady 

state error of 0.22 dB and 0.25 dB, respectively. Only a 

minor disturbance is noticed at swap over points (n=35000 

and n=70000). 

 

 

VI. CONCLUSION 

In this paper, four new methods are proposed to 

mitigate IN in MC ANC system employing OSPM for the 

first time under stationary as well as non-stationary 

environment. The outcomes of the simulations show that the 

proposed algorithms offer quicker convergence and lowest 

steady state error for MNR than existing approaches with 

comparable modeling accuracy. Proposed NSS 

MFxLMAT-VSSLMS achieved same performance as par 

with high order complex FxRLS algorithm with much less 

computational complexity. There is a room of improvement 

available in modeling accuracy which is a task of future 

work. 
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