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Abstract— Text data compression is a process of reducing text size by encrypting it. In our daily lives, we 

sometimes come to the point where the physical limitations of a text or data sent to work with it need to be 

addressed more quickly. Ways to create text compression should be adaptive and challenging. 

Compressing text data without losing the original context is important because it significantly reduces 

storage and communication costs. In this study, the focus is on different techniques of encoding text files 

and comparing them in data processing. Some efficient memory encryption programs are analyzed and 

executed in this work. These include: Shannon Fano coding, Hoffman coding, Hoffman comparative 

coding, LZW coding and Run-length coding. These analyzes show how these coding techniques work, how 

much compression for these coding techniques. Writing, the amount of memory required for each 

technique, a comparison between these techniques is possible to find out which technique is better in which 

conditions. Experiments have shown that Hoffman's comparative coding shows a higher compression ratio. 

In addition, the improved RLE encoding suggests a higher performance than the typical example in 

compressing data in text. 
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I. INTRODUCTION 

In computer science and information theory, using 

encryption techniques encrypts and compresses data using 

fewer bits or symbols than the original representation. Data 

compression is useful because it helps reduce the 

consumption of expensive resources, such as hard disk 

space or transmission bandwidth [3]. In the present 

situation where we are faced with the problem of data 

abundance and data disruption, data mining and data 

refinement and compression are used for this purpose. 

However, the problem is that the pressure of large 

compression may cause data loss [2]. That data is one of 

the valuable assets of any organization that the loss of 

some information can lead to major problems in the 

organization's decisions and strategies. The purpose here is 

to present and implement some data compression 

algorithms efficiently and compare them to the methods 

used for data compression in data mining. Calculating 

some of the important compression factors for each of 

these algorithms, comparing different encryption 

techniques and improving the performance of different data 

compression techniques, and selecting a suitable 

encryption method for data mining is the textual data 

considered. 

Data mining, which has become very popular in recent 

years, refers to the use of data analysis tools to discover 

valid patterns and relationships that have been unknown 

until now [13]. These tools may include statistical models, 

mathematical algorithms, and learning methods (Machine 

Learning Methods) that are automated based on experience 

gained through neural networks or decision-making trees. 

Improves. Data mining is not limited to data collection and 

management, but also involves the analysis of data and the 

refinement and compression of data. Applications that 

explore data by examining text or multimedia files for data 

warehouses that have become popular [10]. This type of 

warehouse provides a variety of data types from text, 

image to storage and processing for use in organizational 

strategies and better understanding of data as information. 

Their advantage over databases is the ability to refine data 

and compress data to preserve important data and delete 

trivial data [5]. Each database has its query and query 

language. A multi-year problem in data analysis is 

increasing the size of the data set. This process 

demonstrates the need for more efficient compression 

programs and also for performing analytical operations that 

work directly on compressed data. Efficient compression 

schemes can be designed based on the misuse of patterns 

https://dx.doi.org/10.22161/ijaems.66.2
http://www.ijaems.com/


International Journal of Advanced Engineering, Management and Science (IJAEMS)                        [Vol-6, Issue-6, Jun-2020] 

https://dx.doi.org/10.22161/ijaems.66.2                                                                                                                     ISSN: 2454-1311 

www.ijaems.com                                                                                                                                                                          Page | 232  

and intrinsic structures in the data [9]. Data rotation is one 

of these features that can significantly enhance 

compression. 

Text compression is a process to reduce text size by 

encoding more information. It uses this number of bits and 

bytes to store data which is somewhat reduced [1]. It 

requires a hassle-free technique that will not lose any data 

when compressing a text file. This approach returns the 

text file to its original state [4]. Text compression and 

decompression techniques are intended for natural 

languages such as large data sets of high redundancy 

English and other data with a similar sequential structure 

such as the source code of a program. However, this 

method can be used for any data type to achieve some 

compression [11]. The importance of text compression 

involves reducing storage hardware, data transfer time, and 

bandwidth, which is the use of file Compression can lead 

to a significant reduction in the cost of a drive or solid-state 

drive and improve network bandwidth, cost savings [7]. 

Textual data of various sizes are used in English to apply 

compression and decompression techniques. Text 

compression reduces data storage space. By reducing or 

eliminating redundancies, data compression is done. The 

encryption technique uses fewer bits than the original 

version and eliminates unnecessary information in this 

case. This is a harmless way in which the number of bits 

and bytes is cut off to store information. 

Previous investigations 

There are various methods for compressing data that take 

about forty years to develop. Shannon Fano and Hoffman 

developed and developed compression algorithms in the 

late 40s [10]. In 1949, Shannon and Fano devised a method 

for compression using a systematic method of assigning 

code words based on the probability of blocks called 

Shannon Fano coding. Another method of compressing 

data was found in 1951 by Huffman, known as the 

Huffman algorithm. Since then, the Huffman algorithm has 

been used for compression. 

It has been shown in a review [13], that text data 

compression using the Shannon-Fano algorithm performs 

the same function as the Huffman algorithm, when all 

characters are repeated in a string, and when the expression 

is short and only one character in Text repeats, has the 

same functionality. When input data that have long text 

and data text has a more combinatorial character in the 

string or word, the Huffman algorithm has a greater impact 

on compression. 

In another review [2], we tried compression ratio, 

compression time and decompression time for RLE 

encryption algorithms, Huffman encryption algorithm, 

Shannon Fan algorithm, Adaptive Hoffman encryption 

algorithm, Arithmetic encryption algorithm, and Lempel 

Zev Wel encryption. Were compared using random text 

files. The results show that as the text file size increases, 

the compression time increases. Medium-value encryption 

was less time consuming than the other algorithms for both 

Huffman and Shannon-Fano encryption approaches. In the 

LZW algorithm, it only worked fine for small files. The 

compression time of the Huffman algorithm was 

comparable to the encoding size at the highest time. The 

decompression time of all algorithms was less than 

500,000 milliseconds except for the Adaptive Huffman and 

LZW algorithms. The compression ratio was similar for 

small size files except for RLE encoding, but LZW 

encoding worked best. 

In another study [9], a comparison was made between 

RLE, Huffman, LZW computational encoding, first LZW 

then Hoffman and finally RLE, on the random doc, txt, 

BMP, tiff, gif and jpg files. , Which studies showed that 

LZW and Hoffman give almost the same results when used 

for compressing text files. 

In another study [4], different methods of data compression 

algorithms such as LZW, Hoffman, fixed-length code 

(FLC) and Hoffman after using fixed-length code (HFLC) 

on English text files in terms of size compression, The 

ratio, time (speed) and entropy were examined. The best 

algorithms on all LZW encryption compression scales, 

then Hoffman, Hoffman, after using a fixed-length code 

(HFLC) and a fixed-length code (FLC), with entropy were 

4.719, 4.855, 5.014 and 6.889, respectively. 

In a similar study [5] that analyzed Hoffmann's algorithm 

and compared it with other common compression 

techniques such as Arithmetic, LZW, and RLE based on 

their use in different programs and its benefits. This is very 

efficient coding, and in RLE coding, when the sequence of 

pixels with fewer bits is more frequent, it significantly 

reduces the file size. The LZW algorithm is mostly used in 

TIFF, GIF and text files, which is a fast, harmless 

algorithm that is very easy to use, while the Hoffmann 

algorithm is used in JPEG compression, which produces 

optimal and low-volume code but is relatively slow.  

In another paper [7], Shannon Fano coding, Hoffman 

coding, Adaptive Huffman coding, RLE, arithmetic 

coding, LZ77, LZ78, and LZW were tested using the 

Calgary body. In statistical compression techniques, 

accounting coding has been more effective than other 

methods. In another entropy review, the English text file 

for coding Shannon Fano, Hoffmann coding, Run-length 

(RLE), Lempel-Ziv-Welch (LZW) coding was calculated. 

The compression ratio for encoding Shannon Fano and 

https://dx.doi.org/10.22161/ijaems.66.2
http://www.ijaems.com/


International Journal of Advanced Engineering, Management and Science (IJAEMS)                        [Vol-6, Issue-6, Jun-2020] 

https://dx.doi.org/10.22161/ijaems.66.2                                                                                                                     ISSN: 2454-1311 

www.ijaems.com                                                                                                                                                                          Page | 233  

Hoffman was almost the same, and the two algorithms can 

save 54.7% of space. The compression ratio of Lempel-

Ziv-Welch algorithms is low compared to the Hoffmann 

and Shannon Fano algorithms, and it has been concluded 

that the Hoffmann encryption algorithm is the best result 

for text files. 

In another study [12], data was first compressed by each 

code based on the length of the run, such as Golomb code, 

FDR code, EFDR, MFDR, SAFDR, and OLEL encryption, 

and then another compressed data with Hoffman code was 

compressed. The double compression using the Hoffman 

code was 50.8% compression ratio. Better results were 

obtained for the data set with incremental data. 

In a study [1] on execution time, compression ratio and 

compression efficiency in a distributed customer-server 

environment using four compression algorithms: Hoffmann 

algorithm, Shannon Fano algorithm, LZW algorithm, and 

Run-length encryption algorithm Was analyzed. A 

customer's data is distributed across multiple 

processors/servers and subsequently compressed by servers 

in remote locations and sent to the customer. The Sigrid 

framework was used, and the results showed that the LZ 

algorithm achieves better efficiency/scalability and 

compression ratio, but is slower than other algorithms. 

Hoffman coding, LZW coding, LZW-based Hoffman 

coding were compared for multiple and single 

compression. This showed that Hoffman-based LZW 

encryption can compress data more than any other three, 

while in normal mode the LZW compression ratio is based 

on Hoffmann 4.41, where the maximum compression ratio 

is maximal in the case of compression. The LZW build is 

4.17. Hoffman-based LZW compression is in some cases 

better than LZW compression. 

 

II. METHOD 

As a test, five compression and stress relief techniques 

were used: Shannon-Fano coding, Hoffman coding, 

Hoffman comparative coding, and Lempel Ziv Welch 

coding, and improved RLE and RLE coding. Different 

sizes of text files have been used as data sets, and the 

compression ratio has been measured to determine which 

compression method is best. 

 

III. RESULTS 

The compression ratio depends on the size of the output 

file. The more compressed the output file is, the lower the 

compression ratio. When the compression ratio exceeds 1, 

the output file size is larger than the original input file size. 

Here we can see that in most modified RLE encrypted 

input files the compression ratio is greater than 1, meaning 

that these algorithms expand the original files rather than 

compress them. RLE encoding works best for files with 

sequential duplicates, but typically duplicate data files do 

not. For this reason, the compression ratio is greater than 1. 

The results also show that Shannon Fano encoding is better 

for most inputs than Huffman encoding since for some 

input files the symbol code length in Huffman encoding is 

so large that it increases the output files over the input 

files. Becomes original. It can be said that Repeated 

Huffman encoding shows the best compression ratio for 

most files. 

If the code is shorter, the algorithms have less memory. 

Now if we consider the average length of the code, we will 

see that for Runlength encoding, we have no value for the 

average code length because no encoding is created in Run 

length. But for other techniques, Shannon Fano encodes 

less code than Huffman coding and modified Run-length 

coding. Here, too, Huffman coding shows the best average 

code length for most files. Again, if the standard deviations 

are smaller, the algorithms occupy less memory. Here, too, 

for run-length coding, we have no value for standard 

deviation since no coding is created in Run-length coding. 

But for other techniques, Shannon Fano has less standard 

deviation than Huffman coding and modified Run-length 

coding. Again, Huffman coding provides the best standard 

deviation for most files. 

From the above analysis, we can say that Repeated 

Huffman coding works best for most cases. It has a smaller 

compression ratio, average code length, and standard 

deviation. So, it seems the best algorithm among them. 

This ultimately results in less memory than others for the 

output file after the final lapse. 

If extra runtime is provided for Hoffman's frequent 

programming, then Shannon Fano's programming at lower 

runtime would work quite well. RLE coding for files with 

consecutive duplicates can be very effective. Modified 

RLE coding can be very useful if the temporary file 

intermediary created after applying the Huffman encoding 

to the input file has 0 and 1 consecutive iterations. Finally, 

each compression technique has its pros and cons. It 

depends on the content of the input files on how much 

better compression can be achieved. Table 1 shows the 

four input files after compression and resizing algorithms. 
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Table 1- Comparison of compression algorithms 

Modified 

Runlength 

Coding 

Run length 

Coding 

Shannon 

Fano Coding 

Huffman 

Coding 
Characteristics 

Input File 

Size 

(KB) 

Input File 

(.txt) 

163 KB 291 KB 3.89 KB 87.5 KB Output File Size 

156 1 
1.09 1.96 0.04 0.58 Compression Ratio 

9.83 - 6.35 12.38 Avg. Code Length 

15.33 - 0.19 12.33 Standard Deviation 

164 KB 245 KB 91.8 KB 77.3 KB Output File Size 

117 2 
1.39 1.96 0.83 0.54 Compression Ratio 

9.27 - 6.13 8.95 Avg. Code Length 

14.77 - 0.10 13.89 Standard Deviation 

581 KB 388 KB 339 KB 698 KB Output File Size 

453 3 
1.41 0.91 0.87 1.87 Compression Ratio 

28.12 - 6.49 26.99 Avg. Code Length 

412.79 - 0.27 414.78 Standard Deviation 

477 KB 919 KB 387 KB 765 KB Output File Size 

470 4 
1.01 1.91 0.79 1.79 Compression Ratio 

34.16 - 6.36 34.09 Avg. Code Length 

447.01 - 0.28 450.87 Standard Deviation 

 

IV. CONCLUSION 

Text compression is very important in data refinement in 

data mining. Because data is an important part of data 

mining textual data. Therefore, it requires a no-loss 

technique so that no efficient information is lost when 

compressing or compressing information. In the 

investigations performed in this study on the performance 

and computation and comparison of compression ratios, 

mean code length and standard deviation for Shannon 

Fano coding, Huffman coding, Huffman repeated coding, 

Run-length coding, and modified Run-length coding, in 

The issue of how to compress was examined by each one 

so that, at present, the most effective algorithm can be 

used based on the size of the input text file, the type of 

content, available memory, and execution time to get the 

best results. A new approach to data compression is called 

"Run-length Run Algorithm", which offers much better 

compression than the run-length algorithm. 
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