
International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-6, Issue-6, Jun-2020]

https://dx.doi.org/10.22161/ijaems.66.2 ISSN: 2454-1311

www.ijaems.com Page | 231

Comparison of Compression Algorithms in text

data for Data Mining

Roya Mahmoudi*, Mansoureh Zare

Department of Computer and Information Technology Engineering, Sabzevar branch, Islamic Azad University, Sabzevar, Iran.

*Corresponding Author

Abstract— Text data compression is a process of reducing text size by encrypting it. In our daily lives, we

sometimes come to the point where the physical limitations of a text or data sent to work with it need to be

addressed more quickly. Ways to create text compression should be adaptive and challenging.

Compressing text data without losing the original context is important because it significantly reduces

storage and communication costs. In this study, the focus is on different techniques of encoding text files

and comparing them in data processing. Some efficient memory encryption programs are analyzed and

executed in this work. These include: Shannon Fano coding, Hoffman coding, Hoffman comparative

coding, LZW coding and Run-length coding. These analyzes show how these coding techniques work, how

much compression for these coding techniques. Writing, the amount of memory required for each

technique, a comparison between these techniques is possible to find out which technique is better in which

conditions. Experiments have shown that Hoffman's comparative coding shows a higher compression ratio.

In addition, the improved RLE encoding suggests a higher performance than the typical example in

compressing data in text.

Keywords— data compression, data mining, encryption, text data.

I. INTRODUCTION

In computer science and information theory, using

encryption techniques encrypts and compresses data using

fewer bits or symbols than the original representation. Data

compression is useful because it helps reduce the

consumption of expensive resources, such as hard disk

space or transmission bandwidth [3]. In the present

situation where we are faced with the problem of data

abundance and data disruption, data mining and data

refinement and compression are used for this purpose.

However, the problem is that the pressure of large

compression may cause data loss [2]. That data is one of

the valuable assets of any organization that the loss of

some information can lead to major problems in the

organization's decisions and strategies. The purpose here is

to present and implement some data compression

algorithms efficiently and compare them to the methods

used for data compression in data mining. Calculating

some of the important compression factors for each of

these algorithms, comparing different encryption

techniques and improving the performance of different data

compression techniques, and selecting a suitable

encryption method for data mining is the textual data

considered.

Data mining, which has become very popular in recent

years, refers to the use of data analysis tools to discover

valid patterns and relationships that have been unknown

until now [13]. These tools may include statistical models,

mathematical algorithms, and learning methods (Machine

Learning Methods) that are automated based on experience

gained through neural networks or decision-making trees.

Improves. Data mining is not limited to data collection and

management, but also involves the analysis of data and the

refinement and compression of data. Applications that

explore data by examining text or multimedia files for data

warehouses that have become popular [10]. This type of

warehouse provides a variety of data types from text,

image to storage and processing for use in organizational

strategies and better understanding of data as information.

Their advantage over databases is the ability to refine data

and compress data to preserve important data and delete

trivial data [5]. Each database has its query and query

language. A multi-year problem in data analysis is

increasing the size of the data set. This process

demonstrates the need for more efficient compression

programs and also for performing analytical operations that

work directly on compressed data. Efficient compression

schemes can be designed based on the misuse of patterns

https://dx.doi.org/10.22161/ijaems.66.2
http://www.ijaems.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-6, Issue-6, Jun-2020]

https://dx.doi.org/10.22161/ijaems.66.2 ISSN: 2454-1311

www.ijaems.com Page | 232

and intrinsic structures in the data [9]. Data rotation is one

of these features that can significantly enhance

compression.

Text compression is a process to reduce text size by

encoding more information. It uses this number of bits and

bytes to store data which is somewhat reduced [1]. It

requires a hassle-free technique that will not lose any data

when compressing a text file. This approach returns the

text file to its original state [4]. Text compression and

decompression techniques are intended for natural

languages such as large data sets of high redundancy

English and other data with a similar sequential structure

such as the source code of a program. However, this

method can be used for any data type to achieve some

compression [11]. The importance of text compression

involves reducing storage hardware, data transfer time, and

bandwidth, which is the use of file Compression can lead

to a significant reduction in the cost of a drive or solid-state

drive and improve network bandwidth, cost savings [7].

Textual data of various sizes are used in English to apply

compression and decompression techniques. Text

compression reduces data storage space. By reducing or

eliminating redundancies, data compression is done. The

encryption technique uses fewer bits than the original

version and eliminates unnecessary information in this

case. This is a harmless way in which the number of bits

and bytes is cut off to store information.

Previous investigations

There are various methods for compressing data that take

about forty years to develop. Shannon Fano and Hoffman

developed and developed compression algorithms in the

late 40s [10]. In 1949, Shannon and Fano devised a method

for compression using a systematic method of assigning

code words based on the probability of blocks called

Shannon Fano coding. Another method of compressing

data was found in 1951 by Huffman, known as the

Huffman algorithm. Since then, the Huffman algorithm has

been used for compression.

It has been shown in a review [13], that text data

compression using the Shannon-Fano algorithm performs

the same function as the Huffman algorithm, when all

characters are repeated in a string, and when the expression

is short and only one character in Text repeats, has the

same functionality. When input data that have long text

and data text has a more combinatorial character in the

string or word, the Huffman algorithm has a greater impact

on compression.

In another review [2], we tried compression ratio,

compression time and decompression time for RLE

encryption algorithms, Huffman encryption algorithm,

Shannon Fan algorithm, Adaptive Hoffman encryption

algorithm, Arithmetic encryption algorithm, and Lempel

Zev Wel encryption. Were compared using random text

files. The results show that as the text file size increases,

the compression time increases. Medium-value encryption

was less time consuming than the other algorithms for both

Huffman and Shannon-Fano encryption approaches. In the

LZW algorithm, it only worked fine for small files. The

compression time of the Huffman algorithm was

comparable to the encoding size at the highest time. The

decompression time of all algorithms was less than

500,000 milliseconds except for the Adaptive Huffman and

LZW algorithms. The compression ratio was similar for

small size files except for RLE encoding, but LZW

encoding worked best.

In another study [9], a comparison was made between

RLE, Huffman, LZW computational encoding, first LZW

then Hoffman and finally RLE, on the random doc, txt,

BMP, tiff, gif and jpg files. , Which studies showed that

LZW and Hoffman give almost the same results when used

for compressing text files.

In another study [4], different methods of data compression

algorithms such as LZW, Hoffman, fixed-length code

(FLC) and Hoffman after using fixed-length code (HFLC)

on English text files in terms of size compression, The

ratio, time (speed) and entropy were examined. The best

algorithms on all LZW encryption compression scales,

then Hoffman, Hoffman, after using a fixed-length code

(HFLC) and a fixed-length code (FLC), with entropy were

4.719, 4.855, 5.014 and 6.889, respectively.

In a similar study [5] that analyzed Hoffmann's algorithm

and compared it with other common compression

techniques such as Arithmetic, LZW, and RLE based on

their use in different programs and its benefits. This is very

efficient coding, and in RLE coding, when the sequence of

pixels with fewer bits is more frequent, it significantly

reduces the file size. The LZW algorithm is mostly used in

TIFF, GIF and text files, which is a fast, harmless

algorithm that is very easy to use, while the Hoffmann

algorithm is used in JPEG compression, which produces

optimal and low-volume code but is relatively slow.

In another paper [7], Shannon Fano coding, Hoffman

coding, Adaptive Huffman coding, RLE, arithmetic

coding, LZ77, LZ78, and LZW were tested using the

Calgary body. In statistical compression techniques,

accounting coding has been more effective than other

methods. In another entropy review, the English text file

for coding Shannon Fano, Hoffmann coding, Run-length

(RLE), Lempel-Ziv-Welch (LZW) coding was calculated.

The compression ratio for encoding Shannon Fano and

https://dx.doi.org/10.22161/ijaems.66.2
http://www.ijaems.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-6, Issue-6, Jun-2020]

https://dx.doi.org/10.22161/ijaems.66.2 ISSN: 2454-1311

www.ijaems.com Page | 233

Hoffman was almost the same, and the two algorithms can

save 54.7% of space. The compression ratio of Lempel-

Ziv-Welch algorithms is low compared to the Hoffmann

and Shannon Fano algorithms, and it has been concluded

that the Hoffmann encryption algorithm is the best result

for text files.

In another study [12], data was first compressed by each

code based on the length of the run, such as Golomb code,

FDR code, EFDR, MFDR, SAFDR, and OLEL encryption,

and then another compressed data with Hoffman code was

compressed. The double compression using the Hoffman

code was 50.8% compression ratio. Better results were

obtained for the data set with incremental data.

In a study [1] on execution time, compression ratio and

compression efficiency in a distributed customer-server

environment using four compression algorithms: Hoffmann

algorithm, Shannon Fano algorithm, LZW algorithm, and

Run-length encryption algorithm Was analyzed. A

customer's data is distributed across multiple

processors/servers and subsequently compressed by servers

in remote locations and sent to the customer. The Sigrid

framework was used, and the results showed that the LZ

algorithm achieves better efficiency/scalability and

compression ratio, but is slower than other algorithms.

Hoffman coding, LZW coding, LZW-based Hoffman

coding were compared for multiple and single

compression. This showed that Hoffman-based LZW

encryption can compress data more than any other three,

while in normal mode the LZW compression ratio is based

on Hoffmann 4.41, where the maximum compression ratio

is maximal in the case of compression. The LZW build is

4.17. Hoffman-based LZW compression is in some cases

better than LZW compression.

II. METHOD

As a test, five compression and stress relief techniques

were used: Shannon-Fano coding, Hoffman coding,

Hoffman comparative coding, and Lempel Ziv Welch

coding, and improved RLE and RLE coding. Different

sizes of text files have been used as data sets, and the

compression ratio has been measured to determine which

compression method is best.

III. RESULTS

The compression ratio depends on the size of the output

file. The more compressed the output file is, the lower the

compression ratio. When the compression ratio exceeds 1,

the output file size is larger than the original input file size.

Here we can see that in most modified RLE encrypted

input files the compression ratio is greater than 1, meaning

that these algorithms expand the original files rather than

compress them. RLE encoding works best for files with

sequential duplicates, but typically duplicate data files do

not. For this reason, the compression ratio is greater than 1.

The results also show that Shannon Fano encoding is better

for most inputs than Huffman encoding since for some

input files the symbol code length in Huffman encoding is

so large that it increases the output files over the input

files. Becomes original. It can be said that Repeated

Huffman encoding shows the best compression ratio for

most files.

If the code is shorter, the algorithms have less memory.

Now if we consider the average length of the code, we will

see that for Runlength encoding, we have no value for the

average code length because no encoding is created in Run

length. But for other techniques, Shannon Fano encodes

less code than Huffman coding and modified Run-length

coding. Here, too, Huffman coding shows the best average

code length for most files. Again, if the standard deviations

are smaller, the algorithms occupy less memory. Here, too,

for run-length coding, we have no value for standard

deviation since no coding is created in Run-length coding.

But for other techniques, Shannon Fano has less standard

deviation than Huffman coding and modified Run-length

coding. Again, Huffman coding provides the best standard

deviation for most files.

From the above analysis, we can say that Repeated

Huffman coding works best for most cases. It has a smaller

compression ratio, average code length, and standard

deviation. So, it seems the best algorithm among them.

This ultimately results in less memory than others for the

output file after the final lapse.

If extra runtime is provided for Hoffman's frequent

programming, then Shannon Fano's programming at lower

runtime would work quite well. RLE coding for files with

consecutive duplicates can be very effective. Modified

RLE coding can be very useful if the temporary file

intermediary created after applying the Huffman encoding

to the input file has 0 and 1 consecutive iterations. Finally,

each compression technique has its pros and cons. It

depends on the content of the input files on how much

better compression can be achieved. Table 1 shows the

four input files after compression and resizing algorithms.

https://dx.doi.org/10.22161/ijaems.66.2
http://www.ijaems.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-6, Issue-6, Jun-2020]

https://dx.doi.org/10.22161/ijaems.66.2 ISSN: 2454-1311

www.ijaems.com Page | 234

Table 1- Comparison of compression algorithms

Modified

Runlength

Coding

Run length

Coding

Shannon

Fano Coding

Huffman

Coding
Characteristics

Input File

Size

(KB)

Input File

(.txt)

163 KB 291 KB 3.89 KB 87.5 KB Output File Size

156 1
1.09 1.96 0.04 0.58 Compression Ratio

9.83 - 6.35 12.38 Avg. Code Length

15.33 - 0.19 12.33 Standard Deviation

164 KB 245 KB 91.8 KB 77.3 KB Output File Size

117 2
1.39 1.96 0.83 0.54 Compression Ratio

9.27 - 6.13 8.95 Avg. Code Length

14.77 - 0.10 13.89 Standard Deviation

581 KB 388 KB 339 KB 698 KB Output File Size

453 3
1.41 0.91 0.87 1.87 Compression Ratio

28.12 - 6.49 26.99 Avg. Code Length

412.79 - 0.27 414.78 Standard Deviation

477 KB 919 KB 387 KB 765 KB Output File Size

470 4
1.01 1.91 0.79 1.79 Compression Ratio

34.16 - 6.36 34.09 Avg. Code Length

447.01 - 0.28 450.87 Standard Deviation

IV. CONCLUSION

Text compression is very important in data refinement in

data mining. Because data is an important part of data

mining textual data. Therefore, it requires a no-loss

technique so that no efficient information is lost when

compressing or compressing information. In the

investigations performed in this study on the performance

and computation and comparison of compression ratios,

mean code length and standard deviation for Shannon

Fano coding, Huffman coding, Huffman repeated coding,

Run-length coding, and modified Run-length coding, in

The issue of how to compress was examined by each one

so that, at present, the most effective algorithm can be

used based on the size of the input text file, the type of

content, available memory, and execution time to get the

best results. A new approach to data compression is called

"Run-length Run Algorithm", which offers much better

compression than the run-length algorithm.

REFERENCES

[1] P. Peter, S. Hoffmann, F. Nedwed, L. Hoeltgen, and J.

Weickert, “Evaluating the true potential of diffusion-based

inpainting in a compression context,” Signal Processing:

Image Commun., No. 46,40–53 (2016).

[2] M. N. Huda, “Study on Huffman Coding,” Graduate

Thesis, 2004.

[3] The Canterbury Corpus [Online].

http://corpus.canterbury.ac.nz/resources/cantrbry.zip.

Accessed 30 May (2018)

[4] Habib, A., Rahman, M.S.: Balancing decoding speed and

memory usage for Huffman codes using quaternary tree.

Appl. Inf. 4, 5 (2017). https://doi.org/10.1186/s40535-016-

0032-z

[5] S.R. Kodituwakku and U. S. Amarasinghe, “Comparison of

Lossless Data Compression Algorithms for Text Data,”

Indian Journal of Computer Science and Engineering, vol.

I(4), 2007, pp. 416-426.

[6] C. Lamorahan, B. Pinontoan and N. Nainggolan, “ Data

Compression Using Shannon-Fano Algorithm,” JdC, Vol.

2, No. 2, September, 2013, pp. 10-17.

[7] M. A. Khan, “Evaluation of Basic Data Compression

Algorithms in a Distributed Environment,” Journal of Basic

& Applied Sciences, Vol. 8, 2012, pp. 362-365.

[8] D. Belazzougui, S.J. Puglisi, Range predecessor and

Lempel–Ziv parsing, in: Proc. 27th Annual ACM–SIAM

Symposium on Discrete Algorithms (SODA), 2016, pp.

2053–2071.

https://dx.doi.org/10.22161/ijaems.66.2
http://www.ijaems.com/
http://corpus.canterbury.ac.nz/resources/cantrbry.zip
https://doi.org/10.1186/s40535-016-0032-z
https://doi.org/10.1186/s40535-016-0032-z

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-6, Issue-6, Jun-2020]

https://dx.doi.org/10.22161/ijaems.66.2 ISSN: 2454-1311

www.ijaems.com Page | 235

[9] P. Bille, M.B. Ettienne, I.L. Gørtz, H.W. Vildhøj, Time-

space trade-offs for Lempel–Ziv compressed indexing,

Theoret. Comput. Sci. 713 (2018) 66–77.

[10] D. Kempa, D. Kosolobov, LZ-End parsing in compressed

space, in: Proc. 27th Data Compression Conference (DCC),

2017, pp. 350–359, Extended version in

https://arxiv.org/pdf/1611.01769.pdf.

[11] G. Navarro, A self-index on Block Trees, in: Proc. 24th

International Symposium on String Processing and

Information Retrieval (SPIRE), in: LNCS, vol. 10508,

2017, pp. 278–289.

[12] T. Nishimoto, T.I.S. Inenaga, H. Bannai, M. Takeda,

Dynamic index and LZ factorization in compressed space,

in: Proc. Prague Stringology Conference (PSC), 2016, pp.

158–170. [44] T. Nishimoto, T.I.S. Inenaga

[13] D. Belazzougui, S.J. Puglisi, Y. Tabei, Access, rank, select

in grammar-compressed strings, in: Proc. 23rd Annual

European Symposium on Algorithms (ESA), in: LNCS,

vol. 9294, 2015, pp. 142–154.

[14] D. Kempa, N. Prezza, At the roots of dictionary

compression: string attractors, in: Proc. 50th Annual ACM

SIGACT Symposium on Theory of Computing (STOC),

2018, pp. 827–840.

https://dx.doi.org/10.22161/ijaems.66.2
http://www.ijaems.com/
https://arxiv.org/pdf/1611.01769.pdf

