
 

International Journal of Advanced Engineering, Management and 

Science (IJAEMS) 
Peer-Reviewed Journal 

ISSN: 2454-1311 | Vol-9, Issue-10; Oct, 2023 

Journal Home Page: https://ijaems.com/ 

DOI: https://dx.doi.org/10.22161/ijaems.910.2 
 

 

This article can be downloaded from here: www.ijaems.com                                                                                                                                        9 

©2023 The Author(s). Published by Infogain Publication, This work is licensed under a Creative Commons Attribution 4.0 License. 

http://creativecommons.org/licenses/by/4.0/ 

Deep Learning Neural Networks in the Cloud 

Burhan Humayun Awan 

 

burhanhumayunawan@yahoo.ie 

 

Received: 05 Sep 2023; Received in revised form: 08 Oct 2023; Accepted: 15 Oct 2023; Available online: 25 Oct 2023 

 

Abstract— Deep Neural Networks (DNNs) are currently used in a wide range of critical real-world 

applications as machine learning technology. Due to the high number of parameters that make up DNNs, 

learning and prediction tasks require millions of floating-point operations (FLOPs). Implementing DNNs 

into a cloud computing system with centralized servers and data storage sub-systems equipped with high-

speed and high-performance computing capabilities is a more effective strategy. This research presents an 

updated analysis of the most recent DNNs used in cloud computing. It highlights the necessity of cloud 

computing while presenting and debating numerous DNN complexity issues related to various architectures. 

Additionally, it goes into their intricacies and offers a thorough analysis of several cloud computing 

platforms for DNN deployment. Additionally, it examines the DNN applications that are already running on 

cloud computing platforms to highlight the advantages of using cloud computing for DNNs. The study 

highlights the difficulties associated with implementing DNNs in cloud computing systems and provides 

suggestions for improving both current and future deployments. 
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I. INTRODUCTION 

Numerous pattern recognition applications in real-world 

fields like e-commerce, manufacturing, medicine and 

health, and autonomous vehicles are now being developed 

using deep neural networks (DNNs). However, due to their 

extensive parameter requirements, DNNs pose significant 

computing demands, especially during training. DNNs 

typically have millions of parameters. As an illustration, 

popular DNNs like AlexNet have 60 million parameters, 

while VGG-16 has 138 million. A DNN with 175 billion 

parameters that required a lengthy seven months to train 

was used in a recent OpenAI project for natural language 

processing (NLP) [1]. As a result, it is impossible to train a 

large DNN using a single isolated computer. High-

performance computing tools are necessary for the efficient 

training of DNNs. 

DNN deployment on cloud platforms has increased in 

popularity recently. These cloud computing platforms are 

extremely fast and memory-capable high-performance 

computing systems. On a variety of cloud machine learning 

(ML) platforms, such as Google Colab and Amazon Web 

Services (AWS) Deep Learning, training can be effectively 

carried out in reasonable amounts of time. Centralized 

servers powered by cloud computing provide a lot of 

computing power, a lot of data storage, fast processing, low 

latency, and high availability. DNNs for online applications 

can be deployed thanks in large part to cloud computing. 

 

Fig.1: Deep Neural Network with hidden layers 

 

The implementation of cloud platforms for computationally 

intensive tasks is discussed in various recent survey 

publications cited in the current manuscript. These survey 

papers are divided into three main categories: applications, 

performance improvement technologies, and security 

technologies. Yan et al.'s [2] study of security technologies 

covered a range of solutions for preventing harmful 

assaults, including talks of countermeasures. Recent 
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security methods, including encryption, access structure, 

and fine-grained trace mechanisms, were introduced by 

Nita and Mihailescu [3] and Sun et al. [4]. Gai et al.'s [5] 

analysis of the functionality of blockchain-enabled 

integrated hardware and software in cloud data centers was 

centered on the integration of blockchain with clouds. 

Regarding performance improvement, Pupykina et al. [7] 

investigated memory management methods in cloud 

computing, and Xu et al. [6] assessed technologies for 

managing virtual machine performance. Offloading 

technologies for job optimization across cloud and edge 

systems were covered by Wang et al. [8]. In order to address 

problems and look toward the future, Xu et al. [6] provide 

an overview of computational distribution strategies for 

managing virtual machines in the cloud. Deep 

reinforcement learning-based cloud resource scheduling 

solutions were discussed by Zhou et al. [9] and Feng et al. 

[10]. 

Regarding applications, Bera et al. [12] reviewed cloud 

computing applications in smart grids, while Khan et al. 

[11] provided an overview of mobile cloud topologies and 

the advantages of cloud computing. An overview of cloud 

computing architectures for cyber-physical systems was 

presented by Cao et al. [13], evaluating numerous 

applications. Notably, the development of DNNs in cloud 

computing systems is not a specific emphasis of these 

survey studies.  

This research intends to close this gap by offering a 

thorough analysis of cloud computing methods for DNN 

deployment, along with considerations of difficulties and 

potential future research areas. The article's remaining 

sections are structured to present different DNN 

mechanisms, the need for cloud computing, popular cloud 

platforms for deploying DNNs, specific DNN applications 

implemented in cloud systems, difficulties in current DNN 

deployments using cloud computing systems, and 

opportunities for improving current DNN deployments on 

cloud systems. Finally, a summary of the findings in brings 

the article to a close. 

 

Fig.2: Deep learning architectures in emerging cloud computing architectures 

(Source: Fatsuma Jauro, 2020. Deep learning architectures in emerging cloud computing architectures. Volume 96, 106582, 

ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2020.106582) 

 

Computational Complexities in Deep Learning 

A single deep neural network (DNN) consists of a 

significant number of parameters, demanding a large 

amount of storage memory. A DNN's training and execution 

phases both need a considerable time commitment. This 

section explores several popular DNN architectures, such as 

multilayer perceptron’s (MLPs), convolutional neural 

networks (CNNs), and graph neural networks (GNNs), all 
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of which have intricate architectural designs and a wide 

range of DNN parameters. Because DNN training requires 

extensive computation, it is impractical to use a single 

isolated computer for this purpose, which highlights the 

vital role that cloud computing plays in aiding DNN 

training. 

An extensively discussed neural network is the multilayer 

perceptron [24–26]. Each of MLP's levels, which include an 

input layer, hidden layers, and an output layer, has a 

collection of perceptron components, also known as 

neurons. An MLP with two hidden layers, an input layer, 

and an output layer is shown in Figure 3.  

 

Fig.3: Multi-Layer Perceptron’s Typical Topology  

 

Longer computational times are required to optimize an 

MLP when number of layers are higher. Multiple apps have 

been created as a result of using MLP in the cloud. For 

instance, the study described in [28] concentrated on 

developing a forecasting model that made use of multiple 

input variables generated from several daily basic food price 

kinds. Using the Amazon Cloud Services infrastructure, this 

model sought to forecast the Surabaya consumer price 

index. The multilayer perceptron technique was used in the 

study to build a prediction system with a hidden layer, an 

epoch, and a set number of neurons. Similar to this, a 

different study [29] divided regions afflicted by cancer and 

stored relevant information in the cloud using transfer 

learning-based cancer segmentation (TL-CAN-Seg) 

technology. A unique MLP and an altered Levenberg-

Marquardt (LM) algorithm were used to interpret complex 

picture patterns and accomplish precise classification of 

areas affected by breast cancer, improving the accuracy of 

breast cancer diagnosis. 

Recurrent neural networks (RNNs) are more effective than 

MLPs at handling temporal data, including text and 

sequentially correlated time series. The result from the 

previous phase in the sequence serves as the input for the 

next step in RNNs' unique versions of neural processing 

units [30]. RNNs' hidden state, which is used for iterative 

processing, catches and holds onto data all the way through 

the sequence. RNNs have the ability to learn by storing, 

retrieving, and using historical data to make predictions. 

Model interactions at different temporal scales endow 

memory. Information from all earlier steps is captured by 

the aforementioned concealed state. In order to produce the 

output at a particular step in the sequence, the trained RNN 

can combine the input sequence and the hidden state. 

Despite being created more than a decade ago, RNNs still 

have issues with memory storage and computational time 

limits [31].  

Figure 4 depicts a typical CNN with input/output layers, 

hidden layers, and a fully connected network [41,42]. 

Convolution, activation, and pooling layers are all included 

in a hidden layer. The activation function assists in learning 

nonlinear input patterns from the convolution output, the 

pooling layer consolidates the outputs of the activation 

function into a single value, and the convolution layer 

retrieves input features within this layer. To make 

categorization easier, relevant features are retrieved after 

numerous convolution and pooling procedures. 

 

Fig.4: Typical Convolutional Neural Network (CNN)  

(Source:https://www.analyticsvidhya.com/blog/2022/01/co

nvolutional-neural-network-an-overview/) 

 

A CNN typically consists of millions of network 

parameters, each of which must be determined over the 

course of a long period of time. In particular, ShuffleNet, 

GoogLeNet, DenseNet, ResNet, AlexNet, VGGNet, and 

ConvNet are a few CNN models that include millions of 

network parameters and need a lot of training time. For 

instance, it takes more than two weeks to train ConvNet on 

a machine with four NVIDIA Titan Black GPUs. 

Additionally, OpenAI's CNN, also known as neural 

architecture search (NAS), requires six months to train 

when using 8 P100s in parallel scaling and has a remarkable 

175 billion parameters for natural language processing. 

While purchasing many computers for a single CNN proves 

economically inefficient, training a big CNN on a sole 

computer is prohibitively time-consuming and unfeasible. 

Therefore, the use of CNNs in cloud infrastructure has been 

proven in a number of applications [49-56]. 
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GNN is a result of graph representation learning [57–59], 

which entails transforming and comprehending nodes and 

edges in a graph into a continuous space with fewer 

dimensions. GNN treats non-Euclidean domains using 

elaborate data structures that reflect the relationships 

between these entities [60]. This is true even if it works with 

Euclidean 1-D sequences like texts and 2-D grids like 

images [61]. In GNNs, the underlying data structure is 

represented by a graph with the formula G = (V, E), where 

V denotes the set of vertices or nodes and E denotes the 

edges joining them. It is possible for the relationship (u, v) 

E to be symmetric or asymmetric. Graphs can be 

homogenous, like social networks like Facebook friends, or 

diverse, like knowledge graphs. The incorporated elements 

or graphic topologies may also alter dynamically over time. 

GNNs' exponential node expansion increases 

computational complexity and memory use significantly 

[62]. Notably, some sizable GNNs, like GemNet-XL, 

include billions of parameters [69]. Existing GNN models 

are judged insufficient for large-scale graphs that 

incorporate intricate topologies because they have only 

been evaluated on small graphs [70]. Examples of GNN 

implementation in cloud infrastructure have shown that 

graph analysis is scalable and effective in a variety of 

applications, such as recommender systems, traffic flow 

prediction, industrial IoT, privacy preservation, and matrix 

completion [71–76]. 

It is essential to comprehend the causes of latency in the 

training and inference phases of various DNN architectures 

if you want to deploy them in the cloud with the least 

amount of delay possible. Using methods like dilated 

convolutions in CNNs, for instance, one can increase the 

network's receptive field without adding more parameters 

or layers, which lowers computational cost and inference 

delay [77,78]. The use of backpropagation gradients 

through time, which can be computationally expensive, is 

not necessary with randomization-based learning 

techniques like echo state networks (ESN) [79]. 

Additionally, GNN and CNN pruning strategies can reduce 

the amount of parameters and computations needed, 

resulting in quicker inference times [80,81]. 

Cloud computing architectures for deep learning based 

applications 

Because deep neural network (DNN) architectures are 

complex and demand a large number of parameters, training 

and execution periods are prolonged. As a result, it is 

impossible to train or deploy DNN using a single standalone 

computer. Cloud computing offers a practical answer to this 

problem for these kinds of resource-intensive computations. 

Cloud computing meets the demanding computational 

needs of several DNN implementations and training tasks 

by offering substantial computing power and abundant data 

storage, eventually helping customers using DNNs in 

intense applications [82]. 

The structure and composition of cloud data centers are 

outlined in the next section. The next part discusses 

frequently used commercial cloud computing platforms for 

the deployment of DNN and provides an overview of public 

or volunteer cloud computing platforms. The section also 

discusses frequently used cloud streaming systems, offering 

light on how data streaming is implemented there. 

Researchers studying deep learning (DL) who are looking 

for reliable, affordable, and quick computing platforms for 

DNN development will find this comprehensive material to 

be of particular value. 

- Cloud data centers 

Data storage and computing are handled by cloud data 

centers or remote clouds, including backhaul and core 

networks [83]. A typical cloud computing architecture, 

shown in Figure 5, is made up of cloud users, internet 

network providers, and cloud service providers. Users 

provide computational data over network service providers, 

which servers then receive. This data is processed using 

cloud resources, ensuring that users have enough access to 

a shared pool of resources in response to their requests. This 

use of cloud resources makes it possible to offer adaptable 

processing power and storage, which eventually helps well-

known cloud-based companies like Amazon and Google 

Cloud stay profitable [84, 85]. 

 

 

Fig.5: Typical Cloud Data Center Architecture  

(Source: Elmirghani. 2018. GreenTouch GreenMeter Core 

Network Energy-Efficiency Improvement Measures and 

Optimization. Journal of Optical Communications and 

Networking. 10. 10.1364/JOCN.10.00A250) 

 

Users' requests for calculations are spread across a variety 

of cloud platforms with numerous data centers [86]. 

Resource-intensive computations are made possible by 

resource sharing within and between data centers. To 

increase processing power, a distributed cloud can also be 

connected to hybrid clouds, public clouds, and edge 
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computing installations. User requests can be distributed 

among close-by data centers in an effort to reduce data 

transmission delay. The architecture of a distributed cloud 

consists of numerous sub-clouds. Based on the availability 

of resources, a central controller within the distributed cloud 

distributes computing workloads among various sub-

clouds.  

- DL in the cloud 

The availability of customizable computing resources, a 

critical component for a variety of DL workloads 

characterized by different degrees of compute needs across 

distinct activities and datasets, is one of the main advantages 

of cloud computing. Numerous cloud providers offer 

services to meet these needs, such as the auto-scaling 

features of Amazon EC2 and the scale-up and scale-out 

capabilities of Microsoft Azure. These services make it 

possible to run DL workloads efficiently even while 

working with limited cloud resources. 

Parameter server 

To enable the scalability of distributed machine learning 

applications within cloud data centers, parameter servers 

(PSs) have been developed [87]. To train deep neural 

networks, PSs have been incorporated into a number of deep 

learning frameworks, including TensorFlow and MXNet. 

Even with developments, total reliability cannot be assured 

because cloud data centers may have server outages. To 

ensure the orderly completion of learning tasks in such 

contexts, preventative procedures are required to handle 

job-sharing and backups [88]. The collective, which 

consists of a server group and a worker group, is the center 

of the PS framework. Both have job schedulers and worker 

nodes, which work together in DNN training, while the 

latter also includes a manager and server nodes. Consistent 

hashing is used to express shared parameters as vectors of 

(key, value). Operational data created by nodes is 

communicated to the server, which then distributes global 

information to each node. This framework provides 

flexibility in guaranteeing consistent data when the 

algorithm is not sensitive to data inconsistencies, increasing 

the reliability of the PS framework. It allows asynchronous 

tasks and dependencies by initiating the necessary methods. 

Due to its widespread connectivity with a sizable and 

dynamic resource pool, the PS architecture is more suitable 

with heterogeneous production data centers and public 

clouds than alternative techniques like AllReduce5. But the 

original PS architecture has some drawbacks, such as 

imbalances, elasticity constraints, and static parameter 

assignments. It is not possible to incorporate more available 

resources into ongoing training activities, and workload 

distribution across nodes frequently does not maximize 

resource capacity. Several strategies have been put out to 

deal with these limitations and improve cloud computing's 

capabilities. For instance, Proteus, an elastic PS framework 

created to scale up training on public clouds, was introduced 

by Harlap et al. [89]. The framework dynamically assigns 

PSs and personnel using three transitional stages, 

maximizing cost reductions, particularly when temporary 

revocable resources become available. Litz [90] created 

logical executors, which map physical nodes to control the 

executor states of specific applications, in an additional 

effort to increase elasticity. This method also includes 

micro-tasks for determining dependencies and assigning 

micro-tasks accordingly. 

Advanced learning frameworks 

Deep neural network (DNN) training in cloud environments 

will be more dependable and effective thanks to proposed 

improvements in learning frameworks. For workload 

scheduling and dynamic resource scaling, the DL-driven 

framework DL2 [91] combines supervised learning and 

reinforcement learning techniques. The DNN is initially 

taught offline to assimilate resource allocation patterns from 

prior judgments, and reinforcement learning is then used to 

improve the training of the DNN. An exploitation-

exploration method was used by Chen et al. [92] to propose 

the dynamic PS load distribution scheme known as PSLD. 

The plan consists of three stages: gathering data on each PS, 

having workers create performance profiles, and choosing 

PSs based on performance indicators and communication 

time. 

At the same time, Wang et al. [93] suggested the elastic 

parameter server (EPS), a simple solution that enables 

dynamic resource allocation and deallocation for increased 

resource use and training efficiency. To improve scalability 

and optimize resource utilization, this strategy incorporates 

heuristic scheduling modes like incoming job scheduling 

and running job scheduling. Additionally, more specialized 

frameworks have been created, with a particular emphasis 

on DL workloads on private clouds. In order to reduce 

waiting times, Hu et al. [94 - 95] implemented an 

optimization technique based on the idea of training 

progress and integer programming to handle resource 

scaling challenges particular to AWS and Huawei clouds. 

- Data streaming for the cloud 

The continuous streaming of real-time data is essential for 

supporting deep learning (DL) applications in various 

sensor networks and control systems, such as those found in 

autonomous vehicles or smart grids. For activities like 

recognition or decision-making, it is essential to acquire 

measurements or data as soon as possible. Lack of access to 

the most recent data versions may jeopardize system 

functionality and lower safety standards. Given the huge 

amounts of data volumes contained in each sample, it is 

http://www.ijaems.com/
http://creativecommons.org/licenses/by/4.0/


Awan                                                          International Journal of Advanced Engineering, Management and Science, 9(10) -2023 

This article can be downloaded from here: www.ijaems.com                                                                                                                                      14 

©2023 The Author(s). Published by Infogain Publication, This work is licensed under a Creative Commons Attribution 4.0 License. 

http://creativecommons.org/licenses/by/4.0/ 

impractical to retrain deep neural networks (DNNs) using a 

standalone computer, highlighting the necessity of data 

streaming in a cloud setting. 

Cloud data streaming platforms 

Platforms for streaming cloud data have found use in 

government and academic settings for the analysis of data 

gathered by sensor networks. To make geographic data 

processing easier, the Southern California Earthquake 

Center, for instance, has set up a geophysical sensor 

network [96]. This network's tens of thousands of sensors 

continuously and quickly sample data. In order to better 

understand climate change and create systems for predicting 

earthquakes and inland flooding, geospatial data must be 

collected. Furthermore, to study seismic and hydrological 

features in North America, the Geodesy Advancing 

Geosciences and EarthScope (GAGE) GPS network uses 

information from more than a thousand GPS sensors [97]. 

Similar to this, the US National Science Foundation has 

provided funding for the creation of a worldwide sensor 

network that will largely be used to study climate change 

and the cycling of carbon [98]. 

Data-streaming approaches 

Given that many deep neural networks (DNNs) operate in 

dynamic contexts, it is essential that they constantly absorb 

new information or undergo retraining. A data-streaming 

technique has been developed to handle this issue and 

determine whether streaming data is required for changing 

DNN parameters [101]. This method incorporates a 

strategic trade-off between training expenses and 

performance to decide if DNNs need to be updated. Its use 

with TensorFlowOnSpark for three online learning 

workloads has shown a decrease in total processing time. 

Similar to this, Ashfahani et al. [102] have suggested a data-

streaming approach to modify network topologies in 

response to fresh input. This method makes it easier for 

network nodes to grow and shrink dynamically, improving 

performance while reducing complexity. In comparison to 

previous approaches, comparative evaluations on standard 

datasets have shown improved network performance and 

decreased network complexity [102]. 

A similar advancement is the introduction of an incremental 

high-order DL model by Li et al. [103] that is designed to 

adapt to high-frequency data streams. The strategy 

efficiently minimizes adaptation time by translating data 

into a high-order tensor space, and then uses first-order 

approximations to reduce the time-consuming parameter 

incrementation frequently associated with iterative 

procedures. DNNs may now adapt to dynamic situations 

better than traditional iterative approaches, effectively 

satisfying real-time needs. A unique fuzzy neural network 

has been introduced by Pratama et al. [104] that 

automatically incorporates fuzzy rules from data streams, 

using a simplification procedure to merge unnecessary 

hidden layers and control network growth. 

Results from experiments show that this approach 

successfully limits network size while maintaining 

performance standards. In addition, Nguyen et al. [105] 

have developed a sensor network for gathering maritime 

data, using a deep recurrent neural network combined with 

streaming data to monitor fishing activities, spot smuggling, 

forecast maritime pollution, and improve maritime traffic 

safety and security in real time. This comprehensive method 

effectively handles noisy and infrequently sampled data in 

maritime environments by combining latent variable 

modeling and data streaming to capture key elements within 

maritime dynamics.  

In order to provide real-time predictions, DNN designs in 

cloud environments must incorporate minimal inference 

latencies. Smaller DNN designs or the use of accelerators, 

together with the storage of data features in low-latency 

storage locations for offline precomputing predictions, can 

improve serving latency. Additionally, essential for 

adjusting to newly streamed data and improving DNN 

performance over time is the implementation of incremental 

training [106]. Using model artifacts from well-known, 

publicly accessible DNNs, this entails routine updates of 

DNNs based on fresh streams of data, enabling updates 

without the requirement for retraining from scratch. 

 

II. APPLICATIONS OF DNNS IN THE CLOUD 

Deep neural network (DNN) deployment in the cloud has 

become widely used in a wide range of applications. The 

sections that follow provide an overview of a few of these 

applications, including wireless capsule endoscopy, travel, 

natural language processing (NLP), business intelligence 

(BI), cybersecurity, anomaly detection, and mobile-cloud-

assisted implementations. Tables that give a brief synopsis 

of the application's content follow these subsections. These 

descriptions accurately identify the complex research issues 

posed by the combination of cloud systems and DNNs. 

- Natural language processing 

The application of artificial intelligence (AI) to the interplay 

of computers and human language is known as natural 

language processing (NLP). It entails the creation of 

computational models and algorithms that provide 

computers the ability to effectively comprehend, decode, 

and produce human language. NLP includes a wide range 

of activities, including sentiment analysis, speech 

recognition, language translation, natural language 

comprehension, and more. Its uses span from text analysis 
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tools and chatbots to virtual assistants and language 

translation programs [107 - 115]. 

- Business intelligence 

The technology, systems, and procedures utilized for the 

gathering, integrating, analyzing, and presenting of business 

information are referred to as business intelligence (BI). 

Utilizing a range of software tools, it entails gathering 

information from internal and external sources and turning 

it into insights that can be used to inform strategic and 

tactical business choices. Data mining, data analysis, 

querying, and reporting are just a few of the tasks included 

in business intelligence (BI), which frequently uses metrics 

and key performance indicators (KPIs) to assess an 

organization's or business's success. By offering historical, 

current, and predictive insights of corporate operations, BI's 

primary goal is to enable better business decision-making 

[117 – 120]. 

- Cybersecurity 

The practice of defending computer systems, networks, 

programs, and data from online attacks, harm, or illegal 

access is known as cybersecurity. In order to protect 

information technology (IT) systems and networks from 

theft, damage, or disruption while maintaining the integrity, 

confidentiality, and availability of data, security policies 

and safeguards must be put in place. Malware, ransomware, 

phishing scams, hacking, and other types of cybercrime are 

just a few of the risks that cybersecurity seeks to protect 

against. It includes a wide range of tactics, tools, and best 

practices for preventing, spotting, and dealing with digital 

threats and security breaches [121 - 135]. 

- Anomaly detection 

Finding patterns or occurrences within a dataset that 

drastically depart from expected behavior is known as 

anomaly detection. Finding anomalies, outliers, or 

abnormalities that deviate from the predicted patterns or 

trends in the data entails using statistical analysis, machine 

learning methods, and data mining approaches. The 

identification of anomalous or suspicious activity is critical 

for assuring the integrity, security, and effectiveness of 

operations in a number of different sectors, including 

cybersecurity, fraud detection, system health monitoring, 

and industrial quality control [140 – 154]. 

- Travel 

AI efficiently organizes and processes large datasets 

produced by both clients and service providers in the tourist 

and hospitality industries. Notably, a sizeable portion of 

pertinent data used in the tourism sector comes from GPS 

applications and is frequently linked to social media, 

Internet of Things (IoT), and site traffic statistics. These 

huge databases are managed within the framework of the 

"smart" tourism industry, with the goal of providing 

passengers with knowledgeable and personalized services. 

Applying sophisticated intelligent approaches for analysis 

is necessary when working with datasets that are so diverse, 

detailed, and dispersed [157 – 176]. 

- Remote medical diagnosis 

The use of wireless capsule endoscopy (WCE) has 

significantly increased over the past two years. These 

methods provide a level of internal human visibility for 

diagnostic purposes that is comparable to standard 

endoscopy. These technologies were initially presented in 

2000, and after going through clinical studies, they were 

given the go-ahead by the Food and Drug Administration in 

2001. Notably, these technologies provide improved 

portability and have numerous uses in the delivery of 

systemic biologics and healthcare services [177 – 190]. 

- Mobile-cloud-assisted applications 

A developing technology with a wide range of possible 

applications, the idea of mobile cloud-assisted applications. 

The ability to transfer tasks to cloud servers, hence 

prolonging the system's operational lifespan, is the main 

goal of mobile cloud computing (MCC). The computing 

strain on mobile devices like smartphones, tablets, and 

iPads is also lessened by MCC. To ensure the effectiveness 

of the job offloading inference engine and to ease resource 

restrictions on smartphones, which often have much less 

processing power compared to older approaches, an 

extensive evaluation based on traced data is carried out [195 

– 197]. 

Before using Deep Neural Networks (DNNs), it is urgently 

necessary to remove unnecessary and redundant frames 

during the Wireless Capsule Endoscopy (WCE) operation 

in order to prioritize the video content. However, there are 

some significant difficulties with video prioritizing in 

WCE, especially when there are limited resources and 

processing capabilities. Because of this, the integration of 

MCC helps to offer affordable storage, robust 

computational power, and software services [198 – 199]. 

 

III. CHALLENGES AND FUTURE 

DIRECTIONS 

Cloud-based Deep Neural Networks (DNNs) have been 

constructed for a variety of applications requiring extensive 

big data analysis and high-performance computing, making 

use of the significant computational power and data storage 

capacities provided by cloud platforms. Despite the fact that 

DNNs are effective tools for pattern recognition, they pose 

a number of research obstacles, including issues with 

energy consumption, the length of training and execution, 

data security, and cloud compatibility [203 – 275]. 
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- Energy efficiency 

- Training cost 

- Scalability 

- Data security 

- Privacy awareness 

- Cloud interoperability 

- Learning from non-stationary data: retraining 

efficiency and adaptation 

- Elastic implementations of deep learning models 

and flexible resource allocation 

- Deep reinforcement learning 

- 3D vision applications 

- Optimization of DNNs 

 

IV. CONCLUSIONS 

DNNs have a wide range of applications in numerous real-

world fields. Deploying DNNs on solitary stand-alone PCs 

or mobile devices, however, is frequently problematic for 

huge data storage and analysis applications due to their 

computational complexity and the enormous number of 

parameters necessary in training. As a result, the use of 

DNNs in cloud computing systems has attracted a lot of 

interest. In the beginning, this review article lays out the 

justification for using and training DNNs in cloud-based 

systems. It then digs into the intricate computations of 

popular DNNs, such as MLP, CNN, RNN, and GNN, 

highlighting their high parameter and FLOPs needs. 

The research also provides a thorough analysis of volunteer 

and public cloud computing platforms that have effectively 

included and applied DNNs. Researchers and software 

developers can use this information to choose the best cloud 

computing platform for their DNN-focused apps. The paper 

also provides information on a number of application fields, 

including NLP, BI, cybersecurity, anomaly detection, and 

travel, which have recently reaped significant advantages 

from the integration of DNN in cloud computing. It outlines 

the key difficulties involved in this approach while 

highlighting the benefits and efficiency of installing DNNs 

in cloud-based applications.  

The research also suggests potential possibilities to improve 

current deployments using cloud computing platforms and 

DNNs. This thorough overview study is projected to be a 

useful resource for researchers and programmers interested 

in successfully implementing DNNs on cloud computing 

platforms. 
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