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Abstract—In several fields, Convolutional Neural Networks (CNNs) have demonstrated impressive 

progress in recent years. However, its adoption on devices with limited resources is limited by its enormous 

model scale and high computational requirements. Neural network pruning in particular has become one of 

the most important methods for resolving this problem. The choice of importance criteria has a significant 

impact on pruning's effectiveness. Without systematic comparisons of numerous criteria under the same 

pruning ratio, the majority of the research to far has been on the proposal of single criteria or comparisons 

under non-strict control. Furthermore, trimming frequently results in performance loss that must be fixed 

through fine-tuning. The advent of parameter-efficient fine-tuning algorithms like LoRA offers a fresh 

approach to addressing the high computational cost of conventional global fine-tuning. It is still unknown 

how they work together with various pruning criteria. This is accomplished by conducting controlled 

experiments on the CIFAR-10 dataset to evaluate the performance of three widely used pruning criteria: 

L1-Norm pruning, SNIP pruning, and Taylor pruning, at pruning ratios ranging from 30% to 60%. 

LoRA is being methodically incorporated into the pruning recovery stage for the first time, demonstrating 

that it is a versatile and successful fine-tuning method that might significantly lessen the performance loss 

caused by trimming. Furthermore, in order to support the deployment of effective neural networks, this 

research offers empirical evidence for choosing suitable pruning and fine-tuning procedures for actual 

application objectives as seeking compression rate or accuracy. 

Keywords— L1-Norm Pruning, SNIP Pruning, Taylor Pruning, LoRA, Model Sparsity. 

 
I. INTRODUCTION 

Since the advent of artificial intelligence, 

Convolutional Neural Networks (CNNs) have 

achieved remarkable accomplishments across 

numerous domains. However, their substantial 

model size and computational demands significantly 

hinder deployment on resource-constrained devices. 

To address this challenge, model compression 

techniques, particularly neural network pruning, 

have emerged as key tools for reducing model scale 

and enhancing inference efficiency [1-3]. 

As a mainstream model compression technique, 

the core idea of pruning is to remove redundant 

parameters in the network while preserving model 

performance as much as possible. Based on whether 

the original network structure is retained after 

pruning, it can be categorized into unstructured 

pruning and structured pruning. Early pioneering 

work, such as the Optimal Brain Surgeon proposed 

by Hassibi and Stork, laid the foundation for 

unstructured pruning based on the Hessian matrix 

[4]. However, unstructured pruning requires 

specialized hardware to achieve acceleration. 

Consequently, structured pruning, which directly 

reduces the number of channels or filters and thereby 

enables acceleration on general-purpose hardware, 

has become a key research focus in recent years [5, 6]. 

Structured pruning methods are widely applied in 
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both CNNs and LLMs [7]. 

In unstructured pruning, how to define 

parameter importance is crucial to its effectiveness 

[8-11]. Different importance criteria have led to the 

formation of various pruning approaches. Among 

them, the most intuitive are norm-based criteria, such 

as using the L1-Norm of filter weights to measure 

their importance [5]. This method is computationally 

efficient and requires no additional data, making it 

widely used as a baseline. However, its main 

limitation is that it is a static estimation that fails to 

account for the actual contribution of parameters 

during training dynamics. To assess parameter 

importance more accurately, gradient-based criteria 

were proposed. The first-order Taylor expansion 

criterion introduced by Molchanov was a milestone 

work [12]. This criterion uses the product of the 

gradient of the loss function with respect to the 

weight and the weight itself to approximate its 

importance, positing that parameters with less 

impact on the loss function are less important. By 

incorporating training dynamics, this method 

theoretically better identifies redundant parameters 

[13]. Han et al. have also demonstrated that 

unstructured pruning can effectively compress 

model networks and reduce model size [14]. To 

further reduce computational overhead, connection 

sensitivity-based criteria enable pruning early in the 

training phase, with Lee's proposed Single-shot 

Network Pruning (SNIP) criterion being a prominent 

example [15]. SNIP measures the sensitivity of each 

weight by calculating the magnitude of the gradient 

of the loss function with respect to it and prunes low-

sensitivity connections in a single step before training 

begins. This method offers high efficiency, but its 

"preemptive" pruning strategy has also sparked 

discussions regarding its robustness. 

The core of unstructured pruning lies in 

identifying and removing redundant parameters in 

the network, and its effectiveness highly depends on 

the adopted importance criterion. Although criteria 

such as L1-Norm, Taylor, and SNIP have been widely 

proposed and applied, existing research often focuses 

on the promotion of a single criterion or makes 

comparisons under different experimental settings. 

There is a lack of systematic comparison and in-

depth analysis of the model sparsity patterns, 

compression efficiency, and final performance 

resulting from these criteria under strictly controlled 

conditions with identical pruning ratios. 

Furthermore, pruning inevitably leads to model 

performance degradation, making efficient 

performance recovery crucial. Due to the high 

computational cost of traditional global fine-tuning, 

recently emerged Parameter Efficient Fine-Tuning 

(PEFT) techniques, particularly Low-Rank 

Adaptation (LoRA) proposed by Hu et al., offer a 

new direction to address this issue [16]. Although 

significant progress has been made in the 

aforementioned research, most works focus on 

proposing or improving a single criterion. There is 

insufficient research conducting systematic and fair 

comparisons of different importance criteria under 

strictly controlled conditions with the same target 

pruning ratio [17]. Additionally, the synergistic 

effects of employing emerging PEFT techniques like 

LoRA as a standard recovery method after pruning, 

in conjunction with different pruning criteria, remain 

underexplored [18-20]. 

 
Fig.1. CNN Model Architecture (LeNet Style) 
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To address these research gaps, this paper 

designs a controlled experiment on the CIFAR-10 

dataset to systematically evaluate the pruning effects 

of three mainstream importance criteria—L1-Norm, 

Taylor, and SNIP—on CNN models at target pruning 

ratios ranging from 30% to 60%. This paper 

comprehensively assesses the post-pruning model 

accuracy retention and places particular emphasis on 

analyzing the effectiveness of LoRA fine-tuning as an 

efficient recovery method. 

 

II. MODEL ARCHITECTURE 

This paper employs an improved Convolutional 

Neural Network (Improved CNN) as the benchmark 

model, with its architecture inspired by the visual 

geometry group (VGG) network. The model consists 

of three convolutional blocks, each sequentially 

composed of a convolutional layer (Conv2d), a batch 

normalization layer (BatchNorm2d), a ReLU 

activation function, and a max-pooling layer 

(MaxPool2d). The output channel numbers for the 

three convolutional layers are 64, 128, and 256, 

respectively, with all convolutional kernels having a 

size of 3x3. Following the final pooling layer, the 

feature maps are flattened and fed into two fully 

connected layers (Linear), with a Dropout layer 

(dropout rate of 0.5) incorporated in between to 

prevent overfitting. The final output of the model is 

10-dimensional, corresponding to the 10 classes of 

CIFAR-10. The model was first trained on the 

training set for 60 epochs using the Adam optimizer 

(learning rate 0.001, weight decay set to 1e-4) and a 

step learning rate scheduler (StepLR), ultimately 

achieving a test accuracy of 86.78%. This model 

serves as the baseline for all subsequent pruning 

experiments. The architecture of the convolutional 

neural network model is illustrated in Figure 1, 

where part of the depth is omitted due to the large 

number of layers. 

The experiments utilized the CIFAR-10 dataset, 

which consists of 60,000 32x32 color images across 10 

categories, with 50,000 images for training and 10,000 

for testing. This study adopted a standard data 

preprocessing and augmentation pipeline to enhance 

model generalization. For the training set, 

preprocessing included random horizontal flipping 

and random cropping (with padding=4), followed by 

converting pixel values to tensors and normalization 

(with mean and standard deviation both set to 0.5). 

The data was loaded via PyTorch's DataLoader, with 

the batch size set to 128 for both training and testing. 

 

III. PRUNING METHODS WITH PEFT 

3.1 Pruning Methods 

This paper implements three mainstream structured 

pruning methods on the pre-trained model and 

compares them across various target pruning ratios 

ranging from 30% to 60%. All pruning is performed 

on the weight parameters. 

(1) L1-Norm Pruning 

L1-Norm Pruning uses the L1-Norm of the weights as 

the importance criterion. Its core idea is that a weight 

with a smaller absolute value is less important. The 

importance score 𝐼L1
(𝑊𝑖) is defined as: 

𝐼L1
(𝑊𝑖) = |𝑊𝑖|                           (1) 

Here, 𝑊𝑖 represents the 𝑖-th weight in a given 

layer, meaning the importance score of each weight 

𝑊𝑖is its absolute value. The approach adopted in this 

paper is as follows: for each layer, the L1-Norm of its 

weight matrix is calculated, and the specified 

proportion of weights with the smallest norm values 

are removed. The specific implementation utilizes 

PyTorch's built-

in torch.nn.utils.prune.l1_unstructured function, 

followed by prune.remove to permanently eliminate 

the pruned weights. 

(2) Taylor Importance Pruning 

The Taylor importance pruning method determines 

the significance of a weight by evaluating its impact 

on the loss function. If removing a weight leads to a 

substantial increase in the loss, the weight is 

considered highly important; conversely, if its 

removal results in negligible change or even a 

decrease in the loss, it is deemed unimportant. The 

specific importance score 𝐼Taylor(𝑊𝑖)  can be 

approximated by the absolute value of the product of 

the weight and its gradient: 

𝐼Taylor(𝑊𝑖) = |𝑊𝑖 ⋅ ∇𝑊𝑖
𝐿|                          (2) 

Here, ∇𝑊𝑖
𝐿 represents the gradient of the loss 

function with respect to the weight. To achieve a 

stable estimation, this paper performs forward and 

backward propagation on the first 10 batches of the 

training set and accumulates the importance scores of 

each weight. Therefore, Equation (2) can be rewritten 

as: 

𝐼Taylor
(cumulative)

(𝑊𝑖) = ∑ |𝑊𝑖 ⋅ ∇𝑊𝑖
𝐿(𝑘)|𝑀

𝑘=1                  (3) 
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where ∇𝑊𝑖
𝐿(𝑘)  represents the gradient of the 

loss function with respect to the weight during the 𝑘-

th pruning round, and𝑀denotes the set of all weights 

in a given layer. Subsequently, based on the global 

importance scores, the specified proportion of 

weights with the lowest scores is removed. 

(3) SNIP Pruning 

SNIP pruning is a single-shot pruning algorithm 

based on connection sensitivity, which can be 

performed before training begins. First, forward and 

backward propagation are executed on a batch of 

data, and the absolute value of the gradient for each 

weight is calculated as its sensitivity score: 

 𝐼SNIP(𝑊𝑖) = |𝑔𝑖 ⊙ 𝑊𝑖| ≈ |𝑔𝑖𝑤𝑖|                    (4) 

Among them, 𝑔𝑖 ≜
𝜕𝐿

𝜕𝑊𝑖
 represents the gradient 

of the loss function with respect to the weight, 

and ⊙ denotes the element-wise multiplication 

between two vectors. Subsequently, a global 

sensitivity threshold is calculated, and all weights 

with sensitivity below this threshold are removed. 

For convolutional layers, their sensitivity scores can 

be averaged by the output channels. It is worth 

noting that while the mathematical formulation of 

SNIP pruning appears very similar to that of Taylor 

pruning—and indeed, Taylor's method serves as the 

theoretical foundation for SNIP—the key distinction 

adopted in this work is that SNIP performs pruning 

in a single step before training begins, 

whereas Taylor pruning calculates gradients and 

importance scores using the current model at each 

pruning iteration. 

3.2 Parameter-Efficient Fine-Tuning 

To address the prevalent issue of performance 

degradation following model pruning, this study 

departs from the traditional global fine-tuning 

approach—which is parameter-inefficient and prone 

to overfitting—and instead adopts the LoRA 

technique from the Parameter-Efficient Fine-Tuning 

(PEFT) paradigm for performance recovery [7]. The 

core concept of LoRA originates from the observation 

that the weight update matrices of large models, 

when adapted to downstream tasks, exhibit an 

intrinsic low-rank property. 

Building on this insight, an improved CNN 

integrated with LoRA modules is designed. This 

design freezes all original parameters of the pruned 

network to preserve acquired knowledge, while only 

injecting trainable LoRA layers in parallel alongside 

the fully connected layers. These adaptation layers 

approximate the incremental update ΔW of the 

original weights through the product of two small 

matrices B*A. This strategy allows the model to 

optimize only a minimal number of newly added 

parameters during fine-tuning, thereby efficiently 

guiding the model to adapt to new tasks while 

significantly reducing computational and storage 

costs.The hyperparameters for LoRA are set as 

follows: rank = 8, scaling factor (alpha) = 16.0. Only 

these newly added parameters were trained for 10 

epochs using the Adam optimizer with a learning 

rate of 0.001. 

 

IV. EXPERIMENTAL RESULTS 

This paper presents the effects of different pruning 

methods, including L1-Norm, Taylor, and SNIP, on 

model performance, compression efficiency, and 

fine-tuning recovery under various pruning ratios. 

All experiments are based on the CIFAR-10 dataset 

and the Improved CNN model described in Section 

2, and the following evaluation metrics are adopted 

to comprehensively assess the effectiveness of 

different pruning methods: 

(1) Top-1 Accuracy (%): The classification accuracy of 

the model on the test set, serving as the core metric 

for evaluating performance retention. 

(2) Pruning Ratio (%): The targeted proportion of 

weights to be removed, used as a controlled variable 

in the experiments. 

(3) Accuracy Drop (%): The difference in accuracy 

between the pruned model and the original model, 

measuring the destructiveness of pruning. 

(4) LoRA Improvement (%): The difference in 

accuracy after LoRA fine-tuning compared to the 

accuracy right after pruning, evaluating the 

effectiveness of recovery. 

All experiments were implemented using the 

PyTorch framework and executed on a single 

NVIDIA GPU to ensure environmental consistency. 

The original unpruned Improved CNN model used 

in this study achieved an accuracy of 86.78% on the 

test set, serving as the baseline for all comparisons. 

The model size is 9.45 MB, and this performance will 

be used as the benchmark for evaluating the accuracy 

degradation caused by all pruning methods and the 

subsequent recovery effects. 
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4.1 The Impact of Pruning Ratio on Accuracy 

Following the methodology proposed in this paper, 

the performance of the models after pruning and 

before fine-tuning was evaluated to directly assess 

the destructiveness of each pruning method. The 

experimental results are presented in Table 1. An 

initial observation reveals that the three pruning 

methods differ in their ability to preserve 

performance, which can be analyzed across different 

pruning ratios: 

(1) Low Target Pruning Ratios (30%-40%): 

At low target pruning ratios, the SNIP method 

demonstrated the best performance, maintaining the 

highest accuracy rates of 86.61% and 86.07%, which 

are nearly equivalent to the original model's 86.78%. 

The Taylor method ranked second, achieving a 

respectable 81.72% at a 30% pruning ratio but 

dropping significantly to 68.34% at 40%. In contrast, 

the L1-Norm method performed the poorest, with 

accuracy already declining markedly to 65.17% and 

60.64% even at these low pruning ratios. 

(2) High Target Pruning Ratios (50%-60%): 

When the target pruning ratio was set at 60%, the 

accuracy of the models pruned by all three pruning 

methods was less than 40%. The models obtained 

using Taylor and SNIP pruning methods even had an 

accuracy of less than 20%. Therefore, this experiment 

considers that a target pruning ratio of 60% is too 

high, significantly damaging the underlying 

structure of the original model. Under a target 

pruning ratio of 50%, the models pruned by Taylor 

and L1-Norm methods had accuracies of less than 

50%, suggesting that a 50% target pruning ratio is 

still too high for these two methods. However, the 

model obtained using the SNIP pruning method was 

able to maintain an accuracy of 70.42%, significantly 

better than the other two methods. Combined with 

subsequent fine-tuning operations, the model's 

accuracy can be further improved. Therefore, this 

experiment shows that a target pruning ratio of 50% 

is still a meaningful pruning ratio for the SNIP 

method. Both the Taylor and L1-Norm methods 

experienced sharp performance degradation at high 

pruning ratios. Particularly at the 60% pruning ratio, 

the accuracy of both Taylor and SNIP dropped to 

approximately 16%. 

Table 1. Accuracy of Three Pruned Models under 

Different Target Pruning Ratios 

Pruning 

Ratio 
L1-Norm Taylor SNIP 

30% 0.6517 0.8172 0.8661 

40% 0.6084 0.6834 0.8607 

50% 0.4995 0.4540 0.7042 

60% 0.3922 0.1654 0.1617 

 

 

Fig.2. Accuracy vs. Pruning Ratio for Different Pruning Methods 

 

Plotting the data from Table 1 into the line 

chart of Figure 2 clearly reveals the extent and 

pattern of impact that different pruning methods 

have on model performance. The chart shows that as 

the target pruning ratio increases from 30% to 60%, 

the accuracy of all pruning methods exhibits a 

declining trend. It is noteworthy that the three 

pruning methods—L1-Norm, Taylor, and SNIP—
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demonstrate distinct degradation characteristics 

across different pruning intervals: at low target 

pruning ratios, the performance decline of each 

method is relatively gradual, with minor differences 

between them; however, when reaching high target 

pruning ratios, the rate of accuracy drop accelerates 

significantly, and the performance gap between 

different methods widens progressively, reflecting 

the varying capabilities of each pruning criterion in 

identifying and preserving critical network 

connections. Particularly notable is that at the high 

target pruning ratio of 60%, the accuracy of all 

methods drops to a low level, a phenomenon that 

highlights the damage caused by excessive pruning 

to the model's representational capacity, while also 

emphasizing the necessity and urgency of employing 

PEFT methods like LoRA for performance recovery 

under such extreme sparsity conditions. 

 

Fig.3. Achieved Sparsity vs. Target Pruning Ratio 

 

The actual sparsity ratios of the pruned 

models obtained through the three pruning methods 

are shown in Figure 3. By comparing the actual 

sparsity levels achieved by different pruning 

methods under different target pruning rates, this 

figure provides profound insights into the core 

performance and control precision of each pruning 

algorithm. The ideal diagonal line in the figure 

represents the target sparsity, while the proximity of 

the three curves (L1-Norm, Taylor, and SNIP) to this 

ideal line visually reflects the precision and reliability 

of each method. Through systematic analysis of the 

deviation patterns of these curves across different 

pruning intervals, it can be evaluated whether each 

method exhibits systematic biases—such as a 

tendency toward conservative under-pruning or 

aggressive over-pruning. This quantitative 

assessment of pruning precision is crucial. It can be 

observed that the L1-Norm method achieves actual 

sparsity that perfectly matches the target sparsity, 

indicating that this method "follows instructions 

precisely." The Taylor method shows a slightly 

higher actual sparsity than the target at the 30% 

pruning ratio, while matching the target at other 

ratios, suggesting it possesses a certain level of 

intelligent judgment but overall still completes the 

task as required. In contrast, the SNIP method is the 

most aggressive: when it identifies a large number of 

redundant weights, it prunes quite boldly. 

Consequently, at every target pruning ratio, the 

actual sparsity of SNIP-pruned models significantly 

exceeds the target sparsity. 

4.2 Performance Recovery via LoRA Fine-Tuning 

According to the methodology proposed in this 

paper, the performance of the models after pruning 

and after fine-tuning was evaluated. These results are 

presentedalongside the performance of the models 

after pruning but before fine-tuning in Table 2. The 

table clearly demonstrates the effectiveness of LoRA 

fine-tuning, which produced significant performance 

recovery for all pruning methods and across all 

pruning ratios, with the sole exception of SNIP at the 

60% target pruning ratio. This improvement is 

visually evident in Figure 4. 
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Table 2. Accuracy of Three Pruning Methods Combined with LoRA Fine-Tuning under Different Target Pruning Ratios 

Pruning Ratio L1-Norm L1-Norm + LoRA Taylor Taylor + LoRA SNIP SNIP + LoRA 

30% 0.6517 0.8346 0.8172 0.8579 0.8661 0.8670 

40% 0.6084 0.8105 0.6834 0.8418 0.8607 0.8629 

50% 0.4995 0.7938 0.4540 0.8230 0.7042 0.8496 

60% 0.3922 0.7622 0.1654 0.7583 0.1617 0.1917 

 

Fig.4. Pruning Methods Comparison at Different Pruning Rations 

 

The experimental data reveal the synergistic 

effects between different pruning methods and LoRA. 

For highly destructive pruning methods like L1-

Norm and Taylor, LoRA acts as a "lifesaver." In the 

case of L1-Norm + LoRA, even at the 60% target 

pruning ratio where the post-pruning accuracy 

plummets to 39.22%, LoRA is able to restore it to 

76.22%, representing an improvement of 37 

percentage points. For Taylor + LoRA, the most 

substantial recovery is observed at the 60% pruning 

ratio with an impressive 59.29% increase. This 

indicates that although Taylor pruning removes a 

significant number of weights, it effectively preserves 

the network's "skeleton" or "potential," enabling 

LoRA to efficiently reconstruct functionality on this 

foundation and demonstrating the strongest recovery 

capability.On the other hand, for pruning methods 

like SNIP that already maintain good performance, 

LoRA serves as "icing on the cake." At target pruning 

ratios of 30%–50%, SNIP alone maintains accuracy 

between 86.61% and 70.42%, leaving limited room for 

LoRA to bring improvements ranging from only 0.09% 

to 14.54%. Nevertheless, the final accuracy achieved 

by SNIP + LoRA is the highest among all 

combinations. However, at the 60% target pruning 

ratio, SNIP's accuracy drops drastically and can no 

longer be recovered through LoRA fine-tuning. This 

trend after fine-tuning is visually captured in Figure 

5. 
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Fig.5. Accuracy vs. Pruning Ratio for Different Pruning Methods with LoRA 

 

4.3 Discussion 

The pruning effects of different importance criteria 

are directly determined by their underlying 

theoretical assumptions and computational 

approaches. The SNIP criterion demonstrates 

excellent performance retention at target pruning 

ratios of 30%-50%, which can be attributed to its 

foundation in connection sensitivity. By calculating 

gradient magnitudes through a single forward-

backward pass during the model initialization phase, 

SNIP identifies weights with the least impact on the 

loss function. This "one-shot global pruning" strategy 

tends to remove a substantial number of redundant 

connections, resulting in actual sparsity that often 

significantly exceeds the target value, reflecting its 

strong compression aggressiveness. However, this 

aggressive approach may excessively remove 

structurally critical weights in the network at the 

high target pruning ratio of 60%, damaging the 

model's skeleton and consequently making 

subsequent fine-tuning ineffective for performance 

recovery. This finding aligns with Lee's emphasis on 

SNIP's efficiency and one-shot pruning advantage, 

while our experiments also reveal its potential risks 

under high sparsity demands, thereby 

supplementing the original research's insufficient 

discussion of extreme compression scenarios. 

The Taylor importance criterion, when 

combined with LoRA fine-tuning, shows the 

strongest recovery capability at the 50% target 

pruning ratio. This is because the Taylor criterion 

dynamically evaluates parameter importance 

through the interaction between weights and their 

gradients, reflecting the actual contribution of 

parameters during the training process. This 

gradient-based evaluation enables better 

discrimination between important and unimportant 

weights, thereby preserving the functional skeleton 

of the model after pruning, while enhancing the 

accuracy of importance estimation through the 

incorporation of gradient information. Our 

experimental results further indicate that the Taylor 

method can achieve effective reconstruction through 

LoRA even at higher target pruning ratios, 

suggesting that the retained weight structure 

contains substantial representational potential. 

Although L1-Norm pruning is simple in 

criterion and computationally efficient, its sole 

reliance on weight magnitude while ignoring 

training dynamics leads to the poorest performance 

across all pruning ratios. Nevertheless, L1-Norm 

pruning combined with LoRA still achieves 

considerable recovery at the high target pruning ratio 

of 60%, indicating that while its pruning approach is 

"blind," it does not destroy the most fundamental 

network structure. That is, norm-based methods, 

though imprecise, can still serve as stable 

compression baselines. Based on the presentation of 

experimental data, the summarized characteristics of 

the three pruning methods discussed above are 

systematically compared and described in Table 3. 
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Table 3. Comparative Summary of Characteristics of the Three Pruning Methods 

Pruning Method L1-Norm Taylor SNIP 

Characteristics Precise Executor Mild Over-achiever Aggressive Over-executor 

Performance 

The L1-Norm method 

precisely achieved the target 

sparsity across all pruning 

ratios 

It slightly exceeded the target 

sparsity by 5.5% at the 30% 

pruning ratio, but accurately 

met the target at other ratios 

It significantly exceeded the target 

sparsity, with the deviation 

magnitude increasing as the target 

ratio rose 

Rationale 

L1-Norm pruning, based on 

simple weight magnitude 

ranking, can remove weights 

strictly according to the 

specified ratio 

The Taylor importance 

criterion, being gradient-based, 

may identify a larger proportion 

of "less important" weights in 

certain layers 

SNIP employs a global sensitivity 

threshold, exhibiting a tendency to 

remove more connections deemed 

unimportant 

Advantages 

It provides predictable and 

controllable compression 

outcomes 

It demonstrates a certain degree 

of intelligent adaptive capability 

It achieves the highest accuracy 

rates at target pruning ratios of 

30%-50% 

 

V. CONCLUSION 

Through systematic comparative experiments, this 

study reveals the distinct performance of three 

mainstream pruning criteria—L1-Norm, Taylor, and 

SNIP—under identical target pruning ratios, and 

validates the effectiveness of LoRA fine-tuning in 

restoring model performance after pruning. 

In terms of strategy selection, the optimal 

choice depends on the target pruning ratio. At low 

target pruning ratios (30%-40%), the recommended 

strategy is SNIP + LoRA, as it can almost fully restore 

the original model performance, representing the 

solution with minimal accuracy loss. At high target 

pruning ratios, if the target is 50%, the recommended 

strategies are Taylor + LoRA or SNIP + LoRA. The 

former combination demonstrates remarkable 

recovery effectiveness, while the latter achieves the 

highest accuracy. However, if the target pruning 

ratio is 60%, the recommended strategies 

become Taylor + LoRA or L1-Norm + LoRA, as they 

can still restore accuracy to over 75%, demonstrating 

stronger robustness. In contrast, SNIP appears to 

damage the most fundamental structure of the model 

under extremely high pruning ratios, making it 

impossible for LoRA to effectively recover its 

accuracy. 

In summary, the conclusions of this study both 

support and supplement existing research. It has 

been successfully obtained a performance 

comparison of the three pruning methods—L1-Norm, 

Taylor, and SNIP—across target pruning ratios of 

30% to 60%, and introduced LoRA fine-tuning into 

the pruning recovery phase. This demonstrates that 

LoRA, as a universal and efficient recovery method, 

can significantly mitigate the performance loss 

caused by different pruning techniques, providing 

important insights for future research. The final 

selection of a pruning strategy should be based on 

practical application requirements. SNIP + 

LoRA and Taylor + LoRA are superior at target 

pruning ratios of 30%-50%. At a target pruning ratio 

of 60%, although the accuracy of SNIP + 

LoRA cannot be salvaged, the accuracy of L1-Norm + 

LoRA and Taylor + LoRA can still be restored to a 

trustworthy range through LoRA fine-tuning. 
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