and Science (IJAEMS)

Peer-Reviewed Journal

INFOGAIN

PUBLICATION

International Journal of Advanced Engineering, Management

ISSN: 2454-1311 | Vol-11, Issue-6; Nov-Dec, 2025
Journal Home Page: https:/ /ijaems.com/

e.ﬁbﬂ@

in
b w’%‘ i
ol T

DOI: https:/ /dx.doi.org/10.22161 /ijaems.116.2

Research on Recovery under Pruning Degeneration

Using LoRA Technology
Hao-Lin Ye, Chih-Ying Chuang’

Guangdong-Taiwan College of Industrial Science & Technology, Dongguan University of Technology (DGUT), Dongguan

523000, China
*Corresponding Author, Email: ccyrandy@dgut.edu.cn

Received: 28 Sept 2025; Received in revised form: 31 Oct 2025; Accepted: 04 Nov 2025; Available online: 08 Nov 2025

Abstract—In several fields, Convolutional Neural Networks (CNNs) have demonstrated impressive
progress in recent years. However, its adoption on devices with limited resources is limited by its enormous
model scale and high computational requirements. Neural network pruning in particular has become one of
the most important methods for resolving this problem. The choice of importance criteria has a significant
impact on pruning's effectiveness. Without systematic comparisons of numerous criteria under the same
pruning ratio, the majority of the research to far has been on the proposal of single criteria or comparisons
under non-strict control. Furthermore, trimming frequently results in performance loss that must be fixed
through fine-tuning. The advent of parameter-efficient fine-tuning algorithms like LoRA offers a fresh
approach to addressing the high computational cost of conventional global fine-tuning. It is still unknown
how they work together with various pruning criteria. This is accomplished by conducting controlled
experiments on the CIFAR-10 dataset to evaluate the performance of three widely used pruning criteria:
Li-Norm pruning, SNIP pruning, and Taylor pruning, at pruning ratios ranging from 30% to 60%.
LoRA is being methodically incorporated into the pruning recovery stage for the first time, demonstrating
that it is a versatile and successful fine-tuning method that might significantly lessen the performance loss
caused by trimming. Furthermore, in order to support the deployment of effective neural networks, this
research offers empirical evidence for choosing suitable pruning and fine-tuning procedures for actual

application objectives as seeking compression rate or accuracy.

Keywords— Li-Norm Pruning, SNIP Pruning, Taylor Pruning, LoRA, Model Sparsity.

I. INTRODUCTION

Since the advent of artificial intelligence,
Convolutional Neural Networks (CNNs) have
achieved remarkable accomplishments across
numerous domains. However, their substantial
model size and computational demands significantly
hinder deployment on resource-constrained devices.
To address this challenge, model compression
techniques, particularly neural network pruning,
have emerged as key tools for reducing model scale
and enhancing inference efficiency [1-3].

As a mainstream model compression technique,
the core idea of pruning is to remove redundant

parameters in the network while preserving model
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performance as much as possible. Based on whether
the original network structure is retained after
pruning, it can be categorized into unstructured
pruning and structured pruning. Early pioneering
work, such as the Optimal Brain Surgeon proposed
by Hassibi and Stork, laid the foundation for
unstructured pruning based on the Hessian matrix
[4]. However, unstructured pruning requires
specialized hardware to achieve acceleration.
Consequently, structured pruning, which directly
reduces the number of channels or filters and thereby
enables acceleration on general-purpose hardware,
has become a key research focus in recent years [5, 6].
Structured pruning methods are widely applied in
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both CNNs and LLMs [7].

In unstructured pruning, how to define
parameter importance is crucial to its effectiveness
[8-11]. Different importance criteria have led to the
formation of various pruning approaches. Among
them, the most intuitive are norm-based criteria, such
as using the L;-Norm of filter weights to measure
their importance [5]. This method is computationally
efficient and requires no additional data, making it
widely used as a baseline. However, its main
limitation is that it is a static estimation that fails to
account for the actual contribution of parameters
during training dynamics. To assess parameter
importance more accurately, gradient-based criteria
were proposed. The first-order Taylor expansion
criterion introduced by Molchanov was a milestone
work [12]. This criterion uses the product of the
gradient of the loss function with respect to the
weight and the weight itself to approximate its
importance, positing that parameters with less
impact on the loss function are less important. By
incorporating training dynamics, this method
theoretically better identifies redundant parameters
[13]. Han et al. have also demonstrated that
unstructured pruning can effectively compress
model networks and reduce model size [14]. To
further reduce computational overhead, connection
sensitivity-based criteria enable pruning early in the
training phase, with Lee's proposed Single-shot
Network Pruning (SNIP) criterion being a prominent
example [15]. SNIP measures the sensitivity of each
weight by calculating the magnitude of the gradient
of the loss function with respect to it and prunes low-
sensitivity connections in a single step before training
begins. This method offers high efficiency, but its
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"preemptive" pruning strategy has also sparked
discussions regarding its robustness.

The core of unstructured pruning lies in
identifying and removing redundant parameters in
the network, and its effectiveness highly depends on
the adopted importance criterion. Although criteria
such as Li-Norm, Taylor, and SNIP have been widely
proposed and applied, existing research often focuses
on the promotion of a single criterion or makes
comparisons under different experimental settings.
There is a lack of systematic comparison and in-
depth analysis of the model sparsity patterns,
compression efficiency, and final performance
resulting from these criteria under strictly controlled
conditions ~ with  identical  pruning  ratios.
Furthermore, pruning inevitably leads to model
performance  degradation, making  efficient
performance recovery crucial. Due to the high
computational cost of traditional global fine-tuning,
recently emerged Parameter Efficient Fine-Tuning
(PEFT) Low-Rank

Adaptation (LoRA) proposed by Hu et al., offer a

techniques, particularly
new direction to address this issue [16]. Although
significant progress has been made in the
aforementioned research, most works focus on
proposing or improving a single criterion. There is
insufficient research conducting systematic and fair
comparisons of different importance criteria under
strictly controlled conditions with the same target
pruning ratio [17]. Additionally, the synergistic
effects of employing emerging PEFT techniques like
LoRA as a standard recovery method after pruning,
in conjunction with different pruning criteria, remain
underexplored [18-20].

Flatten

Fig.1. CNN Model Architecture (LeNet Style)
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To address these research gaps, this paper
designs a controlled experiment on the CIFAR-10
dataset to systematically evaluate the pruning effects
of three mainstream importance criteria—Li-Norm,
Taylor, and SNIP —on CNN models at target pruning
ratios ranging from 30% to 60%. This paper
comprehensively assesses the post-pruning model
accuracy retention and places particular emphasis on
analyzing the effectiveness of LoRA fine-tuning as an
efficient recovery method.

II. MODEL ARCHITECTURE

This paper employs an improved Convolutional
Neural Network (Improved CNN) as the benchmark
model, with its architecture inspired by the visual
geometry group (VGG) network. The model consists
of three convolutional blocks, each sequentially
composed of a convolutional layer (Conv2d), a batch
normalization layer (BatchNorm2d), a ReLU
activation function, and a max-pooling layer
(MaxPool2d). The output channel numbers for the
three convolutional layers are 64, 128, and 256,
respectively, with all convolutional kernels having a
size of 3x3. Following the final pooling layer, the
feature maps are flattened and fed into two fully
connected layers (Linear), with a Dropout layer
(dropout rate of 0.5) incorporated in between to
prevent overfitting. The final output of the model is
10-dimensional, corresponding to the 10 classes of
CIFAR-10. The model was first trained on the
training set for 60 epochs using the Adam optimizer
(learning rate 0.001, weight decay set to le-4) and a
step learning rate scheduler (StepLR), ultimately
achieving a test accuracy of 86.78%. This model
serves as the baseline for all subsequent pruning
experiments. The architecture of the convolutional
neural network model is illustrated in Figure 1,
where part of the depth is omitted due to the large
number of layers.

The experiments utilized the CIFAR-10 dataset,
which consists of 60,000 32x32 color images across 10
categories, with 50,000 images for training and 10,000
for testing. This study adopted a standard data
preprocessing and augmentation pipeline to enhance
model generalization. For the training set,
preprocessing included random horizontal flipping
and random cropping (with padding=4), followed by
converting pixel values to tensors and normalization
(with mean and standard deviation both set to 0.5).
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The data was loaded via PyTorch's DataLoader, with
the batch size set to 128 for both training and testing.

III. PRUNING METHODS WITH PEFT
3.1 Pruning Methods
This paper implements three mainstream structured
pruning methods on the pre-trained model and
compares them across various target pruning ratios
ranging from 30% to 60%. All pruning is performed
on the weight parameters.
(1) Li-Norm Pruning
Li-Norm Pruning uses the Li-Norm of the weights as
the importance criterion. Its core idea is that a weight
with a smaller absolute value is less important. The
importance score I, (W;) is defined as:
L, (W) = W] (1)
Here, W;represents the i-th weight in a given
layer, meaning the importance score of each weight
Wiis its absolute value. The approach adopted in this
paper is as follows: for each layer, the Li-Norm of its
weight matrix is calculated, and the specified
proportion of weights with the smallest norm values
are removed. The specific implementation utilizes
PyTorch's built-
in  torch.nn.utils.prune.ll_unstructured function,
followed by prune.remove to permanently eliminate
the pruned weights.
(2) Taylor Importance Pruning
The Taylor importance pruning method determines
the significance of a weight by evaluating its impact
on the loss function. If removing a weight leads to a
substantial increase in the loss, the weight is
considered highly important; conversely, if its
removal results in negligible change or even a
decrease in the loss, it is deemed unimportant. The
specific importance score Ipayor(W;) can be
approximated by the absolute value of the product of
the weight and its gradient:
Itayior (W) = |Wi ’ VWiLl 2)
Here, Vi, L represents the gradient of the loss
function with respect to the weight. To achieve a
stable estimation, this paper performs forward and
backward propagation on the first 10 batches of the
training set and accumulates the importance scores of
each weight. Therefore, Equation (2) can be rewritten
as:

lati
Iayior (W) = Z0 Wi - Vi L) 3)
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where Vy, L®) represents the gradient of the
loss function with respect to the weight during the k-
th pruning round, andMdenotes the set of all weights
in a given layer. Subsequently, based on the global
importance scores, the specified proportion of
weights with the lowest scores is removed.
(3) SNIP Pruning
SNIP pruning is a single-shot pruning algorithm
based on connection sensitivity, which can be
performed before training begins. First, forward and
backward propagation are executed on a batch of
data, and the absolute value of the gradient for each
weight is calculated as its sensitivity score:
Isnip (W) = 1g: O Wil = |giwi] 4
2

Among them, g; £ a_vl|;- represents the gradient
i

of the loss function with respect to the weight,
and © denotes the element-wise multiplication
between two vectors. Subsequently, a global
sensitivity threshold is calculated, and all weights
with sensitivity below this threshold are removed.
For convolutional layers, their sensitivity scores can
be averaged by the output channels. It is worth
noting that while the mathematical formulation of
SNIP pruning appears very similar to that of Taylor
pruning —and indeed, Taylor's method serves as the
theoretical foundation for SNIP —the key distinction
adopted in this work is that SNIP performs pruning
in a single step Dbefore training begins,
whereas Taylor pruning calculates gradients and
importance scores using the current model at each
pruning iteration.

3.2 Parameter-Efficient Fine-Tuning

To address the prevalent issue of performance
degradation following model pruning, this study
departs from the traditional global fine-tuning
approach —which is parameter-inefficient and prone
to overfitting—and instead adopts the LoRA
technique from the Parameter-Efficient Fine-Tuning
(PEFT) paradigm for performance recovery [7]. The
core concept of LoRA originates from the observation
that the weight update matrices of large models,
when adapted to downstream tasks, exhibit an
intrinsic low-rank property.

Building on this insight, an improved CNN
integrated with LoRA modules is designed. This
design freezes all original parameters of the pruned
network to preserve acquired knowledge, while only
injecting trainable LoRA layers in parallel alongside
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the fully connected layers. These adaptation layers
approximate the incremental update AW of the
original weights through the product of two small
matrices B*A. This strategy allows the model to
optimize only a minimal number of newly added
parameters during fine-tuning, thereby efficiently
guiding the model to adapt to new tasks while
significantly reducing computational and storage
costs.The hyperparameters for LoRA are set as
follows: rank = 8, scaling factor (alpha) = 16.0. Only
these newly added parameters were trained for 10
epochs using the Adam optimizer with a learning
rate of 0.001.

IV. EXPERIMENTAL RESULTS

This paper presents the effects of different pruning
methods, including Li-Norm, Taylor, and SNIP, on
model performance, compression efficiency, and
fine-tuning recovery under various pruning ratios.
All experiments are based on the CIFAR-10 dataset
and the Improved CNN model described in Section
2, and the following evaluation metrics are adopted
to comprehensively assess the effectiveness of
different pruning methods:

(1) Top-1 Accuracy (%): The classification accuracy of
the model on the test set, serving as the core metric
for evaluating performance retention.
(2) Pruning Ratio (%): The targeted proportion of
weights to be removed, used as a controlled variable
in the experiments.
(3) Accuracy Drop (%): The difference in accuracy
between the pruned model and the original model,
measuring the destructiveness of pruning.
(4) LoRA Improvement (%): The difference in
accuracy after LoRA fine-tuning compared to the
accuracy right after pruning, evaluating the
effectiveness of recovery.

All experiments were implemented using the
PyTorch framework and executed on a single
NVIDIA GPU to ensure environmental consistency.
The original unpruned Improved CNN model used
in this study achieved an accuracy of 86.78% on the
test set, serving as the baseline for all comparisons.
The model size is 9.45 MB, and this performance will
be used as the benchmark for evaluating the accuracy
degradation caused by all pruning methods and the

subsequent recovery effects.
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4.1 The Impact of Pruning Ratio on Accuracy

Following the methodology proposed in this paper,
the performance of the models after pruning and
before fine-tuning was evaluated to directly assess
the destructiveness of each pruning method. The
experimental results are presented in Table 1. An
initial observation reveals that the three pruning
methods differ in their
performance, which can be analyzed across different

ability to preserve
pruning ratios:
(1) Low Target Pruning Ratios (30%-40%):

At low target pruning ratios, the SNIP method
demonstrated the best performance, maintaining the
highest accuracy rates of 86.61% and 86.07%, which
are nearly equivalent to the original model's 86.78%.
The Taylor method ranked second, achieving a
respectable 81.72% at a 30% pruning ratio but
dropping significantly to 68.34% at 40%. In contrast,
the Li-Norm method performed the poorest, with
accuracy already declining markedly to 65.17% and
60.64% even at these low pruning ratios.

(2) High Target Pruning Ratios (50%-60%):

When the target pruning ratio was set at 60%, the
accuracy of the models pruned by all three pruning
methods was less than 40%. The models obtained
using Taylor and SNIP pruning methods even had an
accuracy of less than 20%. Therefore, this experiment

considers that a target pruning ratio of 60% is too
0.9

- -
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high, the
structure of the original model. Under a target

significantly =~ damaging underlying
pruning ratio of 50%, the models pruned by Taylor
and L;-Norm methods had accuracies of less than
50%, suggesting that a 50% target pruning ratio is
still too high for these two methods. However, the
model obtained using the SNIP pruning method was
able to maintain an accuracy of 70.42%, significantly
better than the other two methods. Combined with
subsequent fine-tuning operations, the model's
accuracy can be further improved. Therefore, this
experiment shows that a target pruning ratio of 50%
is still a meaningful pruning ratio for the SNIP
method. Both the Taylor and Li-Norm methods
experienced sharp performance degradation at high
pruning ratios. Particularly at the 60% pruning ratio,
the accuracy of both Taylor and SNIP dropped to
approximately 16%.
Table 1. Accuracy of Three Pruned Models under

Different Target Pruning Ratios

Prun.mg L1-Norm Taylor SNIP
Ratio
30% 0.6517 0.8172 0.8661
40% 0.6084 0.6834 0.8607
50% 0.4995 0.4540 0.7042
60% 0.3922 0.1654 0.1617

0.8

0.7

=
=

o
w

Accuracy

0.4

0.3
—e— Original

—&— L1-Norm (Pruned)
02 Taylor (Pruned)
—¥— SNIP (Pruned)

30 35 40

45
Pruning Ratio (%)

50 85 60

Fig.2. Accuracy vs. Pruning Ratio for Different Pruning Methods

Plotting the data from Table 1 into the line
chart of Figure 2 clearly reveals the extent and
pattern of impact that different pruning methods
have on model performance. The chart shows that as

This article can be downloaded from here: www.ijaems.com

the target pruning ratio increases from 30% to 60%,
the accuracy of all pruning methods exhibits a
declining trend. It is noteworthy that the three
pruning methods—Li-Norm, Taylor, and SNIP—
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demonstrate distinct degradation characteristics
across different pruning intervals: at low target
pruning ratios, the performance decline of each
method is relatively gradual, with minor differences
between them; however, when reaching high target
pruning ratios, the rate of accuracy drop accelerates
significantly, and the performance gap between
different methods widens progressively, reflecting
the varying capabilities of each pruning criterion in

International Journal of Advanced Engineering, Management and Science, 11(6) -2025

identifying and preserving critical network
connections. Particularly notable is that at the high
target pruning ratio of 60%, the accuracy of all
methods drops to a low level, a phenomenon that
highlights the damage caused by excessive pruning
to the model's representational capacity, while also
emphasizing the necessity and urgency of employing
PEFT methods like LoRA for performance recovery

under such extreme sparsity conditions.

90
—8— L1-NORM

TAYLOR
=&~ SNIP
ap4{ ——- ldeal

T04
a0 4

50

40 .
ol /

Achieved Sparsity (%)

30 35 40

45
Target Pruning Ratio (%)

50 55 (14

Fig.3. Achieved Sparsity vs. Target Pruning Ratio

The actual sparsity ratios of the pruned
models obtained through the three pruning methods
are shown in Figure 3. By comparing the actual
sparsity levels achieved by different pruning
methods under different target pruning rates, this
figure provides profound insights into the core
performance and control precision of each pruning
algorithm. The ideal diagonal line in the figure
represents the target sparsity, while the proximity of
the three curves (Li-Norm, Taylor, and SNIP) to this
ideal line visually reflects the precision and reliability
of each method. Through systematic analysis of the
deviation patterns of these curves across different
pruning intervals, it can be evaluated whether each
method exhibits systematic biases—such as a
tendency toward conservative under-pruning or
aggressive  over-pruning.  This  quantitative
assessment of pruning precision is crucial. It can be
observed that the Li-Norm method achieves actual
sparsity that perfectly matches the target sparsity,
indicating that this method "follows instructions
precisely." The Taylor method shows a slightly

This article can be downloaded from here: www.ijaems.com

higher actual sparsity than the target at the 30%
pruning ratio, while matching the target at other
ratios, suggesting it possesses a certain level of
intelligent judgment but overall still completes the
task as required. In contrast, the SNIP method is the
most aggressive: when it identifies a large number of
redundant weights, it prunes quite boldly.
Consequently, at every target pruning ratio, the
actual sparsity of SNIP-pruned models significantly
exceeds the target sparsity.

4.2 Performance Recovery via LoORA Fine-Tuning
According to the methodology proposed in this
paper, the performance of the models after pruning
and after fine-tuning was evaluated. These results are
presentedalongside the performance of the models
after pruning but before fine-tuning in Table 2. The
table clearly demonstrates the effectiveness of LoRA
fine-tuning, which produced significant performance
recovery for all pruning methods and across all
pruning ratios, with the sole exception of SNIP at the
60% target pruning ratio. This improvement is
visually evident in Figure 4.
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Table 2. Accuracy of Three Pruning Methods Combined with LoRA Fine-Tuning under Different Target Pruning Ratios

Pruning Ratio L1-Norm | L1-Norm + LoRA | Taylor Taylor + LoRA SNIP SNIP + LoRA
30% 0.6517 0.8346 0.8172 0.8579 0.8661 0.8670
40% 0.6084 0.8105 0.6834 0.8418 0.8607 0.8629
50% 0.4995 0.7938 0.4540 0.8230 0.7042 0.8496
60% 0.3922 0.7622 0.1654 0.7583 0.1617 0.1917
0 Pruning Ratio: 30.0% 1 Pruning Ratio: 40.0%
- g -ty
----.AI'LE:L‘J’R&-ES_S.&E __________ - _a_ﬁ;____u.&ﬁ..._-_______‘ﬂ’_siﬁ_"-___a_F;ﬁ’." _____ _____ATLELlpEE__;_w __________________ me---------&‘.ﬁiﬂz---.”.”ﬁiﬁ _____
- Lt F'mmr-\r(;v:\‘j‘!remad SHF "’ Hrem Pruni;;vﬁlrethod e
Pruning Ratio: 50.0% Pruning Ratio: 60.0%
i === Original: 0.8678 A
After Pruning
o e e I o T

Accuracy

0.8

o
®

1
=

02

0.8230

0.7042

-== Original: 0.8678

After Pruning
After LoORA

0.4995
0.4540

Accuracy

03822

=
i

P 0.1817
0z 0.1654 0.1617

0.0

L1-Norm Taylor SNIP

Pruning Method

0.0

L1-Norm Taylor SNIP

Pruning Method

Fig.4. Pruning Methods Comparison at Different Pruning Rations

The experimental data reveal the synergistic

effects between different pruning methods and LoRA.

For highly destructive pruning methods like L;-
Norm and Taylor, LoRA acts as a "lifesaver." In the
case of Li-Norm + LoRA, even at the 60% target
pruning ratio where the post-pruning accuracy
plummets to 39.22%, LoRA is able to restore it to
76.22%, of 37
percentage points. For Taylor + LoRA, the most

representing an improvement
substantial recovery is observed at the 60% pruning
ratio with an impressive 59.29% increase. This
indicates that although Taylor pruning removes a
significant number of weights, it effectively preserves
the network's "skeleton" or "potential," enabling

LoRA to efficiently reconstruct functionality on this

This article can be downloaded from here: www.ijaems.com

foundation and demonstrating the strongest recovery
capability.On the other hand, for pruning methods
like SNIP that already maintain good performance,
LoRA serves as "icing on the cake." At target pruning
ratios of 30%-50%, SNIP alone maintains accuracy
between 86.61% and 70.42%, leaving limited room for
LoRA to bring improvements ranging from only 0.09%
to 14.54%. Nevertheless, the final accuracy achieved
by SNIP + LoRA
combinations. However, at the 60% target pruning

is the highest among all

ratio, SNIP's accuracy drops drastically and can no
longer be recovered through LoRA fine-tuning. This
trend after fine-tuning is visually captured in Figure
5.
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Fig.5. Accuracy vs. Pruning Ratio for Different Pruning Methods with LoRA

4.3 Discussion
The pruning effects of different importance criteria

are directly determined by their underlying
theoretical  assumptions and  computational
approaches. The SNIP criterion demonstrates

excellent performance retention at target pruning
ratios of 30%-50%, which can be attributed to its
foundation in connection sensitivity. By calculating
gradient magnitudes through a single forward-
backward pass during the model initialization phase,
SNIP identifies weights with the least impact on the
loss function. This "one-shot global pruning" strategy
tends to remove a substantial number of redundant
connections, resulting in actual sparsity that often
significantly exceeds the target value, reflecting its
strong compression aggressiveness. However, this
aggressive approach may excessively remove
structurally critical weights in the network at the
high target pruning ratio of 60%, damaging the
model's  skeleton and consequently making
subsequent fine-tuning ineffective for performance
recovery. This finding aligns with Lee's emphasis on
SNIP's efficiency and one-shot pruning advantage,
while our experiments also reveal its potential risks
high thereby

supplementing the original research's insufficient

under sparsity demands,
discussion of extreme compression scenarios.
The

combined with LoRA fine-tuning,

when
the
strongest recovery capability at the 50% target

Taylor importance criterion,

shows

pruning ratio. This is because the Taylor criterion

This article can be downloaded from here: www.ijaems.com

dynamically = evaluates parameter importance
through the interaction between weights and their
gradients, reflecting the actual contribution of
the This
evaluation better

discrimination between important and unimportant

parameters during training process.

gradient-based enables
weights, thereby preserving the functional skeleton
of the model after pruning, while enhancing the
accuracy of importance estimation through the
Our
experimental results further indicate that the Taylor

incorporation of gradient information.
method can achieve effective reconstruction through
LoRA even at

suggesting that the

higher target pruning ratios,

retained weight structure
contains substantial representational potential.
Although Li;-Norm pruning is simple in
criterion and computationally efficient, its sole
reliance on weight magnitude while ignoring
training dynamics leads to the poorest performance
across all pruning ratios. Nevertheless, Li-Norm
combined with LoRA still

considerable recovery at the high target pruning ratio

pruning achieves
of 60%, indicating that while its pruning approach is
"blind," it does not destroy the most fundamental
network structure. That is, norm-based methods,
though still stable
compression baselines. Based on the presentation of

imprecise, can serve as
experimental data, the summarized characteristics of
the three pruning methods discussed above are

systematically compared and described in Table 3.
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Table 3. Comparative Summary of Characteristics of the Three Pruning Methods
Pruning Method Li-Norm Taylor SNIP
Characteristics Precise Executor Mild Over-achiever Aggressive Over-executor
The Li-Norm method It slightly exceeded the target It significantly exceeded the target
precisely achieved the target sparsity by 5.5% at the 30% sparsity, with the deviation
Performance ] ) ) ] ) ; ]
sparsity across all pruning pruning ratio, but accurately magnitude increasing as the target
ratios met the target at other ratios ratio rose
L;-Norm pruning, based on The Taylor importance o
] ] ) o ) ] SNIP employs a global sensitivity
simple weight magnitude criterion, being gradient-based, o
] ) ] o ) threshold, exhibiting a tendency to
Rationale ranking, can remove weights | may identify a larger proportion )
) ) ) ) ) remove more connections deemed
strictly according to the of "less important" weights in ]
. . . unimportant
specified ratio certain layers
It provides predictable and ) It achieves the highest accuracy
] It demonstrates a certain degree ) ]
Advantages controllable compression ) ) ) . rates at target pruning ratios of
of intelligent adaptive capability
outcomes 30%-50%

V. CONCLUSION
Through systematic comparative experiments, this
study reveals the distinct performance of three
mainstream pruning criteria—Li-Norm, Taylor, and
SNIP—under identical target pruning ratios, and
validates the effectiveness of LoRA fine-tuning in
restoring model performance after pruning.

In terms of strategy selection, the optimal
choice depends on the target pruning ratio. At low
target pruning ratios (30%-40%), the recommended
strategy is SNIP + LoRA, as it can almost fully restore
the original model performance, representing the
solution with minimal accuracy loss. At high target
pruning ratios, if the target is 50%, the recommended
strategies are Taylor + LoRA or SNIP + LoRA. The
former combination demonstrates remarkable
recovery effectiveness, while the latter achieves the
highest accuracy. However, if the target pruning
ratio is 60%, the recommended strategies
become Taylor + LoRA or Li-Norm + LoRA, as they
can still restore accuracy to over 75%, demonstrating
stronger robustness. In contrast, SNIP appears to
damage the most fundamental structure of the model
under extremely high pruning ratios, making it
impossible for LoRA to effectively recover its
accuracy.

In summary, the conclusions of this study both
support and supplement existing research. It has
obtained a

been  successfully performance

This article can be downloaded from here: www.ijaems.com

comparison of the three pruning methods —Li-Norm,
Taylor, and SNIP—across target pruning ratios of
30% to 60%, and introduced LoRA fine-tuning into
the pruning recovery phase. This demonstrates that
LoRA, as a universal and efficient recovery method,
can significantly mitigate the performance loss
caused by different pruning techniques, providing
important insights for future research. The final
selection of a pruning strategy should be based on
practical  application requirements. SNIP +
LoRA and Taylor + LoRA are superior at target
pruning ratios of 30%-50%. At a target pruning ratio
of 60%, although the accuracy of SNIP +
LoRA cannot be salvaged, the accuracy of L1-Norm +
LoRA and Taylor + LoRA can still be restored to a

trustworthy range through LoRA fine-tuning.
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