ijaers social
facebook
twitter
Blogger
google plus

International Journal of Advanced
Engineering, Management and Science

ijaems google ijaems academia ijaems pbn nauka gov JournalToc Scilit logo neliti neliti microsoft academic search Tyndale Library WorldCat indiana Library WorldCat aalborg university Library J-Gate academickeys ijaems rootindexing ijaems reddit ijaems research bib ijaems slideshare ijaers digg ijaems tumblr ijaems plurk ijaems I2OR ijaems ASI ijaems bibsonomy

Facile fabrication and characterizations of nanostructured Fe2O3-TiO2 composite from Ilmenite ore
( Vol-4,Issue-7,July 2018 )

Author(s):

Chinh Van Tran, Phuong T.H Nguyen, Duy Anh Nguyen, Bac Thanh Le, Tuan Ngoc Truong, Duong Duc La

Keywords:

Ilmenite,Fe2O3-TiO2, nanocomposite, mixed oxides, ore processing.

Abstract:

Fe2O3-TiO2 nanoparticles promises as a highly effective material for adsorption of heavy metals and used as photocatalyst for the removal of organic dye pollutants. In this study, nanostructured Fe2O3-TiO2 composite was successfully fabricated by one-step reaction of ilmenite ore at the high temperature in ambient condition. The resultant Fe2O3-TiO2 composite was characterized by using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), nitrogen adsorption-desorption isotherm. The effects of sintered temperature and time on the formation of the Fe2O3-TiO2 nanocomposite were investigated in detail. The Fe2O3-TiO2 was formed from ilmenite ore after calcination at the temperature of 700oC in 3 hours, followed by a ball-milled process in 4 hours. The obtained Fe2O3-TiO2 composite has an average diameter of from 50 - 100 nm with the BET surface area of 7 m2/g.

ijaers doi crossrefDOI:

10.22161/ijaems.4.7.11

Cite This Article:
Show All (MLA | APA | Chicago | Harvard | IEEE | Bibtex)
Paper Statistics:
  • Total View : 180
  • Downloads : 13
  • Page No: 574-578
Share:
References:

[1] Zhou, W.; Fu, H.; Pan, K.; Tian, C.; Qu, Y.; Lu, P.; Sun, C.-C., Mesoporous TiO2/α-Fe2O3: bifunctional composites for effective elimination of arsenite contamination through simultaneous photocatalytic oxidation and adsorption. J. Phys. Chem. C 2008,112 (49): 19584-19589.
[2] Su, H.; Lv, X.; Zhang, Z.; Yu, J.; Wang, T., Arsenic removal from water by photocatalytic functional Fe2O3–TiO2 porous ceramic. J. Porous Mater. 2017,24 (5): 1227-1235.
[3] Anuradha, S.; Raj, K.; Vijayaraghavan, V.; Viswanathan, B., Sulphated Fe2O3–TiO2 catalysed transesterification of soybean oil to biodiesel. Indian J. Chem. 2014,53A: 1493 - 1499.
[4] D’Arcy, M.; Weiss, D.; Bluck, M.; Vilar, R., Adsorption kinetics, capacity and mechanism of arsenate and phosphate on a bifunctional Fe2O3–TiO2 bi-composite. J. Colloid Interface Sci. 2011,364 (1): 205-212.
[5] Yu, L.; Peng, X.; Ni, F.; Li, J.; Wang, D.; Luan, Z., Arsenite removal from aqueous solutions by γ-Fe2O3–TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J. Hazard. Mater. 2013,246: 10-17.
[6] Beduk, F., Superparamagnetic nanomaterial Fe2O3–TiO2 for the removal of As (V) and As (III) from aqueous solutions. Environ. Technol. 2016,37 (14): 1790-1801.
[7] Gupta, K.; Ghosh, U. C., Arsenic removal using hydrous nanostructure iron (III)–titanium (IV) binary mixed oxide from aqueous solution. J.Hazard. Mater. 2009,161 (2-3): 884-892.
[8] Kang, M.; Choung, S.-J.; Park, J. Y., Photocatalytic performance of nanometer-sized FexOy/TiO2 particle synthesized by hydrothermal method. Cat. Today 2003,87 (1-4): 87-97.
[9] Zhu, J.; Zheng, W.; He, B.; Zhang, J.; Anpo, M., Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Cat. A Chem. 2004,216 (1): 35-43.
[10] Pal, B.; Sharon, M.; Nogami, G., Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties. Materials Chemistry and Physics 1999,59 (3): 254-261.
[11] Zhang, W.; Zhu, Z.; Cheng, C. Y., A literature review of titanium metallurgical processes. Hydrometallurgy 2011,108 (3-4): 177-188.
[12] Tao, T.; Glushenkov, A. M.; Liu, H.; Liu, Z.; Dai, X. J.; Chen, H.; Ringer, S. P.; Chen, Y., Ilmenite FeTiO3 nanoflowers and their pseudocapacitance. J. Phys. Chem. C 2011,115 (35): 17297-17302.
[13] Adánez, J.; Cuadrat, A.; Abad, A.; Gayán, P.; de Diego, L. F.; García-Labiano, F., Ilmenite activation during consecutive redox cycles in chemical-looping combustion. Energy Fuels 2010,24 (2): 1402-1413.
[14] Lind, F.; Berguerand, N.; Seemann, M.; Thunman, H., Ilmenite and nickel as catalysts for upgrading of raw gas derived from biomass gasification. Energy Fuels 2013,27 (2): 997-1007.
[15] García-Muñoz, P.; Pliego, G.; Zazo, J.; Barbero, B.; Bahamonde, A.; Casas, J., Modified ilmenite as catalyst for CWPO-Photoassisted process under LED light. Chem. Eng. J. 2017,318: 89-94.
[16] Halpegamage, S.; Ding, P.; Gong, X.-Q.; Batzill, M., Ordered Fe (II) Ti (IV) O3 mixed monolayer oxide on rutile TiO2 (011). ACS Nano 2015,9 (8): 8627-8636.
[17] Zhang, X.; Li, T.; Gong, Z.; Zhao, H.; Wang, L.; Wan, J.; Wang, D.; Li, X.; Fu, W., Shape controlled FeTiO3 nanostructures: Crystal facet and photocatalytic property. J. Alloy. Comp. 2015,653: 619-623.
[18] Truong, Q. D.; Liu, J.-Y.; Chung, C.-C.; Ling, Y.-C., Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst. Catal. Commun. 2012,19: 85-89.
[19] Phoohinkong, W.; Yimwan, W.; Mekprasart, W.; Pecharapa, W., Preparation of nanoFeTiO3-TiO2 catalyst from ilmenite ore for catalytic degradation of methylene blue. Suranaree J. Sci. Technol. 2016,23 (4).
[20] Raj, K.; Prakash, M.; Shanmugam, R.; Krishnamurthy, K.; Viswanathan, B., Surface acidic properties of sulphated Fe2O3–TiO2. Indian J. Chem. 2011,50A: 1050-1055.
[21] Raj, K. J. A.; Prakash, M.; Viswanathan, B., Selective ortho butylation of phenol over sulfated Fe2O3–TiO2. Catal. Sci. Technol. 2011,1 (7): 1182-1188.
[22] Smith, Y. R.; Raj, K. J. A.; Subramanian, V. R.; Viswanathan, B., Sulfated Fe2O3–TiO2 synthesized from ilmenite ore: a visible light active photocatalyst. Coll. Surf. A Phys. Chem. Eng. Asp. 2010,367 (1-3): 140-147.
[23] Kuvarega, A. T.; Krause, R. W.; Mamba, B. B., Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation. J. Phys. Chem. C 2011,115 (45): 22110-22120.
[24] Zou, J.; Gao, J.; Xie, F., An amorphous TiO2 sol sensitized with H2O2 with the enhancement of photocatalytic activity. J. Alloys Comp. 2010,497 (1-2): 420-427.
[25] Wu, J. C.; Lin, H.-M.; Lai, C.-L., Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl. Cat. A Gen. 2005,296 (2): 194-200.
[26] Hong, T.; Mao, J.; Tao, F.; Lan, M., Recyclable Magnetic Titania Nanocomposite from Ilmenite with Enhanced Photocatalytic Activity. Molecules 2017,22 (12): 2044.